Critical magnetic Prandtl number for small-scale dynamo

被引:80
|
作者
Schekochihin, AA
Cowley, SC
Maron, JL
McWilliams, JC
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2BW, England
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] Univ Iowa, Dept Phys & Astron, Ctr Magnet Reconnect Studies, Iowa City, IA 52242 USA
[5] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevLett.92.054502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a series of numerical simulations showing that the critical magnetic Reynolds number Rm(c) for the nonhelical small-scale dynamo depends on the Reynolds number Re. Namely, the dynamo is shut down if the magnetic Prandtl number Pr-m=Rm/Re is less than some critical value Pr(m,c)less than or similar to1 even for Rm for which dynamo exists at Pr(m)greater than or equal to1. We argue that, in the limit of Re-->infinity, a finite Pr-m,Pr-c may exist. The second possibility is that Pr-m,Pr-c-->0 as Re-->infinity, while Rm(c) tends to a very large constant value inaccessible at current resolutions. If there is a finite Pr-m,Pr-c, the dynamo is sustainable only if magnetic fields can exist at scales smaller than the flow scale, i.e., it is always effectively a large-Pr-m dynamo. If there is a finite Rm(c), our results provide a lower bound: Rm(c)greater than or similar to220 for Pr(m)less than or equal to1/8. This is larger than Rm in many planets and in all liquid-metal experiments.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Magnetic Prandtl number and the small-scale MHD dynamo
    Lozhkin, SA
    Sokolov, DD
    Frik, PG
    [J]. ASTRONOMY REPORTS, 1999, 43 (11) : 753 - 758
  • [2] Small-scale dynamo at low magnetic Prandtl numbers
    Schober, Jennifer
    Schleicher, Dominik
    Bovino, Stefano
    Klessen, Ralf S.
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):
  • [3] Methodology for estimating the magnetic Prandtl number and application to solar surface small-scale dynamo simulations
    Riva, F.
    Steiner, O.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 660
  • [4] Methodology for estimating the magnetic Prandtl number and application to solar surface small-scale dynamo simulations
    Riva, F.
    Steiner, O.
    [J]. Astronomy and Astrophysics, 2022, 660
  • [5] The onset of a small-scale turbulent dynamo at low magnetic Prandtl numbers
    Schekochihin, AA
    Haugen, NEL
    Brandenburg, A
    Cowley, SC
    Maron, JL
    McWilliams, JC
    [J]. ASTROPHYSICAL JOURNAL, 2005, 625 (02): : L115 - L118
  • [6] Growth rate of small-scale dynamo at low magnetic Prandtl numbers
    Kleeorin, Nathan
    Rogachevskii, Igor
    [J]. PHYSICA SCRIPTA, 2012, 86 (01)
  • [7] Numerical evidence for a small-scale dynamo approaching solar magnetic Prandtl numbers
    Jörn Warnecke
    Maarit J. Korpi-Lagg
    Frederick A. Gent
    Matthias Rheinhardt
    [J]. Nature Astronomy, 2023, 7 : 662 - 668
  • [8] Numerical evidence for a small-scale dynamo approaching solar magnetic Prandtl numbers
    Warnecke, Joern
    Korpi-Lagg, Maarit J.
    Gent, Frederick A.
    Rheinhardt, Matthias
    [J]. NATURE ASTRONOMY, 2023, 7 (06) : 662 - 668
  • [9] Small-scale dynamos on the solar surface: dependence on magnetic Prandtl number
    Thaler, I.
    Spruit, H. C.
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 578
  • [10] Feedback of a small-scale magnetic dynamo
    Nazarenko, SV
    Falkovich, GE
    Galtier, S
    [J]. PHYSICAL REVIEW E, 2001, 63 (01):