Invariant manifolds for random dynamical systems with slow and fast variables

被引:35
|
作者
Schmalfuss, Bjoern [1 ]
Schneider, Klaus R. [2 ]
机构
[1] Univ Gesamthsch Paderborn, Inst Math, D-05251 Paderborn, Germany
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
random dynamical systems; fast-slow system; slow manifold; inertial manifold;
D O I
10.1007/s10884-007-9089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider random dynamical systems with slow and fast variables driven by two independent metric dynamical systems modeling stochastic noise. We establish the existence of a random inertial manifold eliminating the fast variables. If the scaling parameter tends to zero, the inertial manifold tends to another manifold which is called the slow manifold. We achieve our results by means of a fixed point technique based on a random graph transform. To apply this technique we need an asymptotic gap condition.
引用
收藏
页码:133 / 164
页数:32
相关论文
共 50 条
  • [1] Invariant Manifolds for Random Dynamical Systems with Slow and Fast Variables
    Björn Schmalfuss
    Klaus R. Schneider
    [J]. Journal of Dynamics and Differential Equations, 2008, 20 : 133 - 164
  • [2] Slow Invariant Manifolds of Slow-Fast Dynamical Systems
    Ginoux, Jean-Marc
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (07):
  • [3] SLOW INVARIANT MANIFOLDS AS CURVATURE OF THE FLOW OF DYNAMICAL SYSTEMS
    Ginoux, Jean-Marc
    Rossetto, Bruno
    Chua, Leon O.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (11): : 3409 - 3430
  • [4] A VARIATIONAL PRINCIPLE FOR COMPUTING SLOW INVARIANT MANIFOLDS IN DISSIPATIVE DYNAMICAL SYSTEMS
    Lebiedz, Dirk
    Siehr, Jochen
    Unger, Jonas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 703 - 720
  • [5] Smoothness of invariant manifolds and foliations for infinite dimensional random dynamical systems
    Jun Shen
    Kening Lu
    Weinian Zhang
    [J]. Science China Mathematics, 2020, 63 : 1877 - 1912
  • [6] Smoothness of invariant manifolds and foliations for infinite dimensional random dynamical systems
    Shen, Jun
    Lu, Kening
    Zhang, Weinian
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (09) : 1877 - 1912
  • [7] Random Perturbation of Invariant Manifolds for Non-Autonomous Dynamical Systems
    Jiang, Tao
    Guo, Zhongkai
    Yan, Xingjie
    [J]. MATHEMATICS, 2022, 10 (06)
  • [8] Fast and slow invariant manifolds in chemical kinetics
    Bykov, V.
    Gol'dshtein, V.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (10) : 1502 - 1515
  • [9] Invariant manifolds in dissipative dynamical systems
    Verhulst, F
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2005, 87 (1-3) : 229 - 244
  • [10] Invariant Manifolds in Dissipative Dynamical Systems
    Ferdinand Verhulst
    [J]. Acta Applicandae Mathematica, 2005, 87 : 229 - 244