Orbital relaxation effects on Kohn-Sham frontier orbital energies in density functional theory

被引:16
|
作者
Zhang, DaDi [1 ]
Zheng, Xiao [1 ,2 ]
Li, Chen [3 ]
Yang, Weitao [3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Duke Univ, Dept Chem, Durham, NC 27708 USA
[4] S China Normal Univ, Sch Chem & Environm, Key Lab Theoret Chem Environm, Guangzhou 510006, Guangdong, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 142卷 / 15期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SELF-INTERACTION CORRECTION; FRACTIONAL PARTICLE NUMBER; EXCHANGE-CORRELATION; DERIVATIVE DISCONTINUITIES; BAND-GAPS; ELECTRON; APPROXIMATIONS; POTENTIALS;
D O I
10.1063/1.4918347
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore effects of orbital relaxation on Kohn-Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn-Sham orbitals upon addition/ removal of a fractional number of electrons to/ from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn-Sham frontier orbital energies by Hartree-Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scaling correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N +/- 1)-electron systems. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Accurate density functional prediction of molecular electron affinity with the scaling corrected Kohn-Sham frontier orbital energies
    Zhang, DaDi
    Yang, Xiaolong
    Zheng, Xiao
    Yang, Weitao
    [J]. MOLECULAR PHYSICS, 2018, 116 (7-8) : 927 - 934
  • [2] Excitation energies expressed as orbital energies of Kohn-Sham density functional theory with long-range corrected functionals
    Hirao, Kimihiko
    Chan, Bun
    Song, Jong-Won
    Bhattarai, Kamala
    Tewary, Subrata
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (14) : 1368 - 1383
  • [3] THE HYDRODYNAMIC FORMULATION OF TIME-DEPENDENT KOHN-SHAM ORBITAL DENSITY FUNCTIONAL THEORY
    BARTOLOTTI, LJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (22): : 5518 - 5523
  • [4] Kohn-Sham Density in a Slater Orbital Basis Set
    Rask, Alan E.
    Li, Liying
    Zimmerman, Paul M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (16): : 3194 - 3204
  • [5] The analog of Koopmans' theorem for virtual Kohn-Sham orbital energies
    Gritsenko, Oleg
    Baerends, Evert Jan
    [J]. CANADIAN JOURNAL OF CHEMISTRY, 2009, 87 (10) : 1383 - 1391
  • [6] ELECTRON REMOVAL ENERGIES IN KOHN-SHAM DENSITY-FUNCTIONAL THEORY
    PERDEW, JP
    NORMAN, MR
    [J]. PHYSICAL REVIEW B, 1982, 26 (10): : 5445 - 5450
  • [7] Charge-Transfer Excitation Energies Expressed as Orbital Energies of Kohn-Sham Density Functional Theory with Long-Range Corrected Functionals
    Hirao, Kimihiko
    Chan, Bun
    Song, Jong-Won
    Bae, Han-Seok
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (39): : 8079 - 8087
  • [8] Kohn-Sham accuracy from orbital-free density functional theory via Δ-machine learning
    Kumar, Shashikant
    Jing, Xin
    Pask, John E.
    Medford, Andrew J.
    Suryanarayana, Phanish
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (24):
  • [9] Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials
    Chong, DP
    Gritsenko, OV
    Baerends, EJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (05): : 1760 - 1772
  • [10] A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies
    Politzer, P
    Abu-Awwad, F
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 1998, 99 (02) : 83 - 87