Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes

被引:75
|
作者
Chen, Changxin [1 ,2 ]
Lin, Yu [3 ]
Zhou, Wu [4 ,5 ,6 ]
Gong, Ming [2 ]
He, Zhuoyang [1 ]
Shi, Fangyuan [1 ]
Li, Xinyue [1 ]
Wu, Justin Zachary [2 ]
Lam, Kai Tak [7 ]
Wang, Jian Nong [8 ]
Yang, Fan [9 ]
Zeng, Qiaoshi [10 ,11 ]
Guo, Jing [7 ]
Gao, Wenpei [12 ]
Zuo, Jian-Min [12 ]
Liu, Jie [13 ]
Hong, Guosong [2 ]
Antaris, Alexander L. [2 ]
Lin, Meng-Chang [14 ]
Mao, Wendy L. [3 ,9 ]
Dai, Hongjie [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Nat Key Lab Sci & Technol Micro Nano Fabricat Key, Shanghai, Peoples R China
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[6] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
[7] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA
[8] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai, Peoples R China
[9] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[10] Ctr High Pressure Sci & Technol Adv Res, Shanghai, Peoples R China
[11] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing, Peoples R China
[12] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL USA
[13] Duke Univ, Dept Chem, Durham, NC USA
[14] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 美国国家科学基金会; 美国能源部;
关键词
ON-SURFACE SYNTHESIS; FABRICATION;
D O I
10.1038/s41928-021-00633-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene nanoribbons are of potential use in the development of electronic and optoelectronic devices. However, the preparation of narrow and long nanoribbons with smooth edges, sizeable bandgaps and high mobilities is challenging. Here we show that sub-10-nm-wide semiconducting graphene nanoribbons with atomically smooth closed edges can be produced by squashing carbon nanotubes using a high-pressure and thermal treatment. With this approach, nanoribbons as narrow as 1.4 nm can be created, and up to 54% of single- and double-walled nanotubes in a sample can be converted into edge-closed nanoribbons. We also fabricate edge-opened nanoribbons using nitric acid as the oxidant to selectively etch the edges of the squashed nanotubes under high pressure. A field-effect transistor fabricated using a 2.8-nm-wide edge-closed nanoribbon exhibits an on/off current ratio of more than 10(4), from which a bandgap of around 494 meV is estimated. The device also exhibits a field-effect mobility of 2,443 cm(2) V-1 s(-1) and an on-state channel conductivity of 7.42 mS. Narrow, long graphene nanoribbons with atomically smooth and defect-free edges can be produced by squashing carbon nanotubes, and can be used to fabricate a sub-3-nm-wide channel field-effect transistor with a mobility of 2,443 cm(2) V-1 s(-1).
引用
收藏
页码:653 / 663
页数:11
相关论文
共 50 条
  • [1] Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes
    Changxin Chen
    Yu Lin
    Wu Zhou
    Ming Gong
    Zhuoyang He
    Fangyuan Shi
    Xinyue Li
    Justin Zachary Wu
    Kai Tak Lam
    Jian Nong Wang
    Fan Yang
    Qiaoshi Zeng
    Jing Guo
    Wenpei Gao
    Jian-Min Zuo
    Jie Liu
    Guosong Hong
    Alexander L. Antaris
    Meng-Chang Lin
    Wendy L. Mao
    Hongjie Dai
    Nature Electronics, 2021, 4 : 653 - 663
  • [2] Assembties of carbon nanotubes and unencapsulated sub-10-nm gold nanoparticles
    Hang, Qingling
    Maschmann, Matthew R.
    Fisher, Timothy S.
    Janes, David B.
    SMALL, 2007, 3 (07) : 1266 - 1271
  • [3] Sub-10-nm Graphene Nanoribbons with Tunable Surface Functionalities for Lithium-ion Batteries
    Li, Yan-Sheng
    Ao, Xiang
    Liao, Jia-Liang
    Jiang, Jianjun
    Wang, Chundong
    Chiang, Wei-Hung
    ELECTROCHIMICA ACTA, 2017, 249 : 404 - 412
  • [4] Unzipping Carbon Nanotubes to Sub-5-nm Graphene Nanoribbons on Cu(111) by Surface Catalysis
    Dong, Wenjie
    Li, Xin
    Lu, Shuai
    Li, Jie
    Wang, Yansong
    Zhong, Mingjun
    Dong, Xu
    Xu, Zhen
    Shen, Qian
    Gao, Song
    Wu, Kai
    Peng, Lian-Mao
    Hou, Shimin
    Zhang, Zhiyong
    Zhang, Yajie
    Wang, Yongfeng
    SMALL, 2024, 20 (21)
  • [5] Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges
    Morelos-Gomez, Aaron
    Vega-Diaz, Sofia Magdalena
    Jehova Gonzalez, Viviana
    Tristan-Lopez, Ferdinando
    Cruz-Silva, Rodolfo
    Fujisawa, Kazunori
    Muramatsu, Hiroyuki
    Hayashi, Takuya
    Mi, Xi
    Shi, Yunfeng
    Sakamoto, Hirotoshi
    Khoerunnisa, Fitri
    Kaneko, Katsumi
    Sumpter, Bobby G.
    Kim, Yoong Ahm
    Meunier, Vincent
    Endo, Morinobu
    Munoz-Sandoval, Emilio
    Terrones, Mauricio
    ACS NANO, 2012, 6 (03) : 2261 - 2272
  • [6] Narrow graphene nanoribbons from carbon nanotubes
    Liying Jiao
    Li Zhang
    Xinran Wang
    Georgi Diankov
    Hongjie Dai
    Nature, 2009, 458 : 877 - 880
  • [7] Narrow graphene nanoribbons from carbon nanotubes
    Jiao, Liying
    Zhang, Li
    Wang, Xinran
    Diankov, Georgi
    Dai, Hongjie
    NATURE, 2009, 458 (7240) : 877 - 880
  • [8] MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons
    Bouwmeester, Damian
    Ghiasi, Talieh S. S.
    Borin Barin, Gabriela
    Muellen, Klaus
    Ruffieux, Pascal
    Fasel, Roman
    van der Zant, Herre S. J.
    ACS APPLIED NANO MATERIALS, 2023, 6 (15) : 13935 - 13944
  • [9] Formation and thermal stability of sub-10-nm carbon templates on Si(100)
    Guise, O
    Ahner, J
    Yates, J
    Levy, J
    APPLIED PHYSICS LETTERS, 2004, 85 (12) : 2352 - 2354
  • [10] Graphene nanoribbons production from flat carbon nanotubes
    Melo, W. S.
    Guerini, S.
    Diniz, E. M.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (18)