Inference on the primary parameter of interest with the aid of dimension reduction estimation

被引:14
|
作者
Li, Lexin [1 ]
Zhu, Liping [2 ]
Zhu, Lixing [3 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Shanghai Univ Finance & Econ, Shanghai, Peoples R China
[3] Hong Kong Baptist Univ, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Central partial mean subspace; Dimension reduction; Partially linear single-index model; Partial ordinary least squares; SLICED INVERSE REGRESSION; ASYMPTOTICS; LIKELIHOOD;
D O I
10.1111/j.1467-9868.2010.00759.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
As high dimensional data become routinely available in applied sciences, sufficient dimension reduction has been widely employed and its research has received considerable attention. However, with the majority of sufficient dimension reduction methodology focusing on the dimension reduction step, complete analysis and inference after dimension reduction have yet to receive much attention. We couple the strategy of sufficient dimension reduction with a flexible semiparametric model. We concentrate on inference with respect to the primary variables of interest, and we employ sufficient dimension reduction to bring down the dimension of the regression effectively. Extensive simulations demonstrate the efficacy of the method proposed, and a real data analysis is presented for illustration.
引用
收藏
页码:59 / 80
页数:22
相关论文
共 50 条
  • [1] Dimension reduction and parameter estimation for additive index models
    Ruan, Lingyan
    Yuan, Ming
    [J]. STATISTICS AND ITS INTERFACE, 2010, 3 (04) : 493 - 499
  • [2] RUL Estimation in Rotary Machines Using Linear Dimension Reduction and Bayesian Inference
    Heydarzadeh, Mehrdad
    Zafarani, Mohsen
    Akin, Bilal
    Nourani, Mehrdad
    [J]. 2017 IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE (IEMDC), 2017,
  • [4] ON POST DIMENSION REDUCTION STATISTICAL INFERENCE
    Kim, Kyongwon
    Li, Bing
    Yu, Zhou
    Li, Lexin
    [J]. ANNALS OF STATISTICS, 2020, 48 (03): : 1567 - 1592
  • [5] Structure parameter estimation method for microwave device using dimension reduction network
    Shudan Han
    Yubo Tian
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 1285 - 1301
  • [6] Structure parameter estimation method for microwave device using dimension reduction network
    Han, Shudan
    Tian, Yubo
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1285 - 1301
  • [7] Rao-Blackwell dimension reduction applied to hazardous source parameter estimation
    Ristic, Branko
    Gunatilaka, Ajith
    Wang, Yan
    [J]. SIGNAL PROCESSING, 2017, 132 : 177 - 182
  • [8] Bayesian Inference: Parameter Estimation for Inference in Small Samples
    Baig, Sabeeh A.
    [J]. NICOTINE & TOBACCO RESEARCH, 2022, 24 (06) : 937 - 941
  • [9] Inference of sampling on Weibull parameter estimation
    Jacquelin, J
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 1996, 3 (06) : 809 - 816
  • [10] Model Parameter Estimation and Inference on Encrypted Domain: Application to Noise Reduction in Encrypted Images
    Lee, Saetbyeol
    Yoon, Jiwon
    [J]. INFORMATION SECURITY APPLICATIONS, 2018, 10763 : 115 - 126