Fast spin ±2 spherical harmonics transforms and application in cosmology

被引:36
|
作者
Wiaux, Y. [1 ]
Jacques, L.
Vandergheynst, P.
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Inst, CH-1015 Lausanne, Switzerland
[2] Univ Catholique Louvain, Commun & Remote Sensing Lab, B-1348 Louvain, Belgium
关键词
computational methods; data analysis; cosmology; cosmic microwave background;
D O I
10.1016/j.jcp.2007.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fast and exact algorithm is developed for the spin +/- 2 spherical harmonics transforms on equi-angular pixelizations on the sphere. It is based on the Driscoll and Healy fast scalar spherical harmonics transform. The theoretical exactness of the transform relies on a sampling theorem. The associated asymptotic complexity is of order O(L(2)log(2)(2)L), where 2L stands for the square-root of the number of sampling points on the sphere, also setting a band limit L for the spin +/- 2 functions considered. The algorithm is presented as an alternative to existing fast algorithms with an asymptotic complexity of order O(L-3) on other pixelizations. We also illustrate these generic developments through their application in cosmology, for the analysis of the cosmic microwave background (CMB) polarization data. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2359 / 2371
页数:13
相关论文
共 50 条
  • [1] Spherical harmonics and spherical averages of Fourier transforms.
    Sjölin, P
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2002, 108 : 41 - 51
  • [2] FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS
    Huffenberger, Kevin M.
    Wandelt, Benjamin D.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2010, 189 (02): : 255 - 260
  • [3] Radon-John transforms and spherical harmonics
    Estrada, Ricardo
    Rubin, Boris
    [J]. REPRESENTATION THEORY AND HARMONIC ANALYSIS ON SYMMETRIC SPACES, 2018, 714 : 131 - 142
  • [4] A fast transform for spherical harmonics
    Martin J. Mohlenkamp
    [J]. Journal of Fourier Analysis and Applications, 1999, 5 : 159 - 184
  • [5] Fast and Accurate Spherical Harmonics Products
    Xin, Hanggao
    Zhou, Zhiqian
    An, Di
    Yan, Ling-Qi
    Xu, Kun
    Hu, Shi-Min
    Yau, Shing-Tung
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06):
  • [6] Fast evaluation of spherical harmonics with sphericart
    Bigi, Filippo
    Fraux, Guillaume
    Browning, Nicholas J.
    Ceriotti, Michele
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (06):
  • [7] A fast spherical harmonics transform algorithm
    Suda, R
    Takami, M
    [J]. MATHEMATICS OF COMPUTATION, 2002, 71 (238) : 703 - 715
  • [8] SPIN-S SPHERICAL HARMONICS AND EDTH
    GOLDBERG, JN
    MACFARLA.AJ
    NEWMAN, ET
    ROHRLICH, F
    SUDARSHA.CG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) : 2155 - &
  • [9] Spin-weighted spherical harmonics and their applications
    del Castillo, G. F. Torres
    [J]. REVISTA MEXICANA DE FISICA, 2007, 53 (02) : 125 - 134
  • [10] ASYMPTOTICALLY FAST ALGORITHMS FOR SPHERICAL AND RELATED TRANSFORMS
    DRISCOLL, JR
    HEALY, DM
    [J]. 30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 344 - 349