Decomposition of group-valued measures on orthoalgebras

被引:0
|
作者
De Lucia, P
Morales, P
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Univ Sherbrooke, Dept Math & Informat, Sherbrooke, PQ J1K 2R1, Canada
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general decomposition theorem for a positive inner regular finitely additive measure on an orthoalgebra L with values in an ordered topological group G, not necessarily commutative. In the case where L is a Boolean algebra, we establish the uniqueness of such a decomposition. With mild extra hypotheses on G, we extend this Boolean decomposition, preserving the uniqueness, to the case where the measure is order bounded instead of being positive. This last result generalizes A. D. Aleksandrov's classical decomposition theorem.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条