f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq

被引:72
|
作者
Buettner, Florian [1 ,6 ]
Pratanwanich, Naruemon [1 ]
McCarthy, Davis J. [1 ,2 ]
Marioni, John C. [1 ,3 ,4 ]
Stegle, Oliver [1 ,5 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge CB10 1SD, England
[2] St Vincents Inst Med Res, 41 Victoria Parade, Fitzroy, Vic 3065, Australia
[3] Canc Res UK Cambridge Inst, Cambridge, England
[4] Wellcome Trust Res Labs, Sanger Inst, Wellcome Genome Campus, Cambridge, England
[5] European Mol Biol Lab, Genome Biol Unit, Meyerhofstr 1, D-69117 Heidelberg, Germany
[6] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, Neuherberg, Germany
来源
GENOME BIOLOGY | 2017年 / 18卷
基金
英国医学研究理事会;
关键词
Single-cell RNA-seq; Sparse factor analysis; Gene set annotations; EMBRYONIC STEM-CELLS; UNWANTED VARIATION; GENE-EXPRESSION; HETEROGENEITY; DIFFERENTIATION; PATHWAY; GROWTH;
D O I
10.1186/s13059-017-1334-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) allows studying heterogeneity in gene expression in large cell populations. Such heterogeneity can arise due to technical or biological factors, making decomposing sources of variation difficult. We here describe f-scLVM (factorial single-cell latent variable model), a method based on factor analysis that uses pathway annotations to guide the inference of interpretable factors underpinning the heterogeneity. Our model jointly estimates the relevance of individual factors, refines gene set annotations, and infers factors without annotation. In applications to multiple scRNA-seq datasets, we find that f-scLVM robustly decomposes scRNA-seq datasets into interpretable components, thereby facilitating the identification of novel subpopulations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq
    Florian Buettner
    Naruemon Pratanwanich
    Davis J. McCarthy
    John C. Marioni
    Oliver Stegle
    [J]. Genome Biology, 18
  • [2] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    [J]. BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [3] User-friendly, scalable tools and workflows for single-cell RNA-seq analysis
    Pablo Moreno
    Ni Huang
    Jonathan R. Manning
    Suhaib Mohammed
    Andrey Solovyev
    Krzysztof Polanski
    Wendi Bacon
    Ruben Chazarra
    Carlos Talavera-López
    Maria A. Doyle
    Guilhem Marnier
    Björn Grüning
    Helena Rasche
    Nancy George
    Silvie Korena Fexova
    Mohamed Alibi
    Zhichao Miao
    Yasset Perez-Riverol
    Maximilian Haeussler
    Alvis Brazma
    Sarah Teichmann
    Kerstin B. Meyer
    Irene Papatheodorou
    [J]. Nature Methods, 2021, 18 : 327 - 328
  • [4] User-friendly, scalable tools and workflows for single-cell RNA-seq analysis
    Moreno, Pablo
    Huang, Ni
    Manning, Jonathan R.
    Mohammed, Suhaib
    Solovyev, Andrey
    Polanski, Krzysztof
    Bacon, Wendi
    Chazarra, Ruben
    Talavera-Lopez, Carlos
    Doyle, Maria A.
    Marnier, Guilhem
    Gruening, Bjoern
    Rasche, Helena
    George, Nancy
    Fexova, Silvie Korena
    Alibi, Mohamed
    Miao, Zhichao
    Perez-Riverol, Yasset
    Haeussler, Maximilian
    Brazma, Alvis
    Teichmann, Sarah
    Meyer, Kerstin B.
    Papatheodorou, Irene
    [J]. NATURE METHODS, 2021, 18 (04) : 327 - 328
  • [5] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    [J]. CURRENT OSTEOPOROSIS REPORTS, 2023,
  • [6] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    [J]. Nature Communications, 11
  • [7] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422
  • [8] Embracing the dropouts in single-cell RNA-seq analysis
    Qiu, Peng
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] scAmpi-A versatile pipeline for single-cell RNA-seq analysis from basics to clinics
    Bertolini, Anne
    Prummer, Michael
    Tuncel, Mustafa Anil
    Menzel, Ulrike
    Rosano-Gonzalez, Maria Lourdes
    Kuipers, Jack
    Stekhoven, Daniel Johannes
    Beerenwinkel, Niko
    Singer, Franziska
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (06)
  • [10] Scedar: A scalable Python']Python package for single-cell RNA-seq exploratory data analysis
    Zhang, Yuanchao
    Kim, Man S.
    Reichenberger, Erin R.
    Stear, Ben
    Taylor, Deanne M.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (04)