Isolated singularities of the prescribed mean curvature equation in Minkowski 3-space

被引:1
|
作者
Galvez, Jose A. [1 ]
Jimenez, Asun [2 ]
Mira, Pablo [3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Fed Fluminense, IME, Dept Geometria, BR-2421020 Niteroi, RJ, Brazil
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
关键词
Quasilinear elliptic equation; Isolated singularity; Prescribed mean curvature; Boundary regularity; MAXIMAL SURFACES; ELLIPTIC-SYSTEMS; SPACE; HYPERSURFACES;
D O I
10.1016/j.anihpc.2018.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a classification of non-removable isolated singularities for real analytic solutions of the prescribed mean curvature equation in Minkowski 3-space. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1631 / 1644
页数:14
相关论文
共 50 条
  • [1] Constant-Mean-Curvature Surfaces with Singularities in Minkowski 3-Space
    Umeda, Yuhei
    EXPERIMENTAL MATHEMATICS, 2009, 18 (03) : 311 - 323
  • [2] INTEGRABLE SYSTEM AND SPACELIKE SURFACES WITH PRESCRIBED MEAN CURVATURE IN MINKOWSKI 3-SPACE
    曹锡芳
    田畴
    Acta Mathematica Scientia, 1999, (01) : 91 - 96
  • [3] Integrable system and spacelike surfaces with prescribed mean curvature in Minkowski 3-space
    Cao, XF
    Tian, C
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (01) : 91 - 96
  • [4] THE GAUSS MAP AND SPACELIKE SURFACES WITH PRESCRIBED MEAN-CURVATURE IN MINKOWSKI 3-SPACE
    AKUTAGAWA, K
    NISHIKAWA, S
    TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (01) : 67 - 82
  • [5] On a prescribed mean curvature equation in Lorentz-Minkowski space
    Azzollini, A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06): : 1122 - 1140
  • [6] Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space
    Corsato, Chiara
    Obersnel, Franco
    Omari, Pierpaolo
    Rivetti, Sabrina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) : 227 - 239
  • [7] Spacelike Sweeping Surfaces and Singularities in Minkowski 3-Space
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [8] Timelike Circular Surfaces and Singularities in Minkowski 3-Space
    Li, Yanlin
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [9] On the Timelike Circular Surface and Singularities in Minkowski 3-Space
    Almoneef, Areej A.
    Abdel-Baky, Rashad A.
    AXIOMS, 2023, 12 (10)
  • [10] Singularities for Timelike Developable Surfaces in Minkowski 3-Space
    Li, Yanlin
    Chen, Zhizhi
    Nazra, Sahar H. H.
    Abdel-Baky, Rashad A. A.
    SYMMETRY-BASEL, 2023, 15 (02):