Generalized diffusion equation with nonlocality of space-time: Analytical and numerical analysis

被引:0
|
作者
Kostrobij, P. [1 ]
Tokarchuk, M. [2 ]
Markovych, B. [1 ]
Ryzha, I. [1 ]
机构
[1] Lviv Polytech Natl Univ, 12 Bandera Str, UA-79013 Lvov, Ukraine
[2] NAS Ukraine, Inst Condensed Matter Phys, 1 Svientsitskii Str, UA-79011 Lvov, Ukraine
关键词
D O I
10.1063/5.0062443
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general approach for obtaining the generalized transport equations for weakly nonequilibrium processes with fractional derivatives by using the Liouville equation with fractional derivatives for a system of classical particles and the Zubarev nonequilibrium statistical operator method. A generalized diffusion equation for a system of classical particles in fractional derivatives is obtained for weakly nonequilibrium processes. Based on the non-Markov diffusion equation, taking into account the spatial nonlocality and modeling the generalized coefficient of particle diffusion D-alpha alpha '(r,r ';t,t ')=W(t,t ')(D) over bar (alpha alpha)'(r,r ') using fractional calculus, the generalized Cattaneo-Maxwell-type diffusion equation in fractional time and space derivatives is obtained. In the case of a constant diffusion coefficient, analytical and numerical studies of the frequency spectrum for the Cattaneo-Maxwell diffusion equation in fractional time and space derivatives are performed. Numerical calculations of the phase and group velocities with a change in values of characteristic relaxation time, diffusion coefficient, and indices of temporal xi and spatial alpha nonlocality are carried out.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Generalized diffusion equation with nonlocality of space-time. Memory function modelling
    Kostrobij, P. P.
    Markovych, B. M.
    Tokarchuk, M., V
    [J]. CONDENSED MATTER PHYSICS, 2020, 23 (02) : 1 - 18
  • [2] Analytical solution for a generalized space-time fractional telegraph equation
    Fino, Ahmad Z.
    Ibrahim, Hassan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1813 - 1824
  • [3] Analytical Solution of Generalized Space-Time Fractional Cable Equation
    Saxena, Ram K.
    Tomovski, Zivorad
    Sandev, Trifce
    [J]. MATHEMATICS, 2015, 3 (02) : 153 - 170
  • [4] Analysis of a mixed space-time diffusion equation
    Ebrahim Momoniat
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1175 - 1186
  • [5] Analysis of a mixed space-time diffusion equation
    Momoniat, Ebrahim
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 1175 - 1186
  • [6] Generalized space-time fractional diffusion equation with composite fractional time derivative
    Tomovski, Zivorad
    Sandev, Trifce
    Metzler, Ralf
    Dubbeldam, Johan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) : 2527 - 2542
  • [7] Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient
    Chi, Guangsheng
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (02) : 122 - 146
  • [8] Analytical solution of the reaction-diffusion equation with space-time fractional derivatives by means of the generalized differential transform method
    Garg, Mridula
    Manohar, Pratibha
    [J]. KUWAIT JOURNAL OF SCIENCE, 2013, 40 (01) : 23 - 34
  • [9] Generalized Sommerfeld problem for time fractional diffusion equation: analytical and numerical approach
    Bondarenko, A. N.
    Ivaschenko, D. S.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (04): : 321 - 335
  • [10] Analytical solution of the generalized space-time fractional ultra-hyperbolic differential equation
    Dorrego, Gustavo A.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (04) : 264 - 275