CNN-Based Feature Fusion Motor Fault Diagnosis

被引:7
|
作者
Qian, Long [1 ]
Li, Binbin [2 ]
Chen, Lijuan [1 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai 201306, Peoples R China
[2] Shanghai Dianji Univ, Sch Kaiserslautern Intelligent Mfg, Shanghai 201306, Peoples R China
关键词
motor fault diagnosis; CNN; feature fusion; multi-signal; NEURAL-NETWORK; ALGORITHM;
D O I
10.3390/electronics11172746
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence fields have been using deep learning in recent years. Due to its powerful data mining capabilities, deep learning has a wide-ranging impact on the diagnosis of motor faults. A method for diagnosing motor faults based on the multi-feature fusion of convolutional neural network (CNN) is presented in this paper. As far as the method is concerned, CNN is used as the basic framework, and the CNN model has been improved. First, the collected vibration and current signals are preprocessed. Second, segmented multi-time window synchronous input is performed on the processed data. In addition, a multi-scale feature extraction process and time series fusion of vibration and current signals subject to synchronous input in the same time window can be performed, which ultimately enables the identification of motor faults with a high degree of accuracy. In order to verify the validity of the proposed fault diagnosis model, an experimental platform for fault simulation was built for the motor, and vibration and current signals of different motor states were collected and verified by experimentation. According to the results of the experiment, the method can effectively combine motor vibration and current signal fault features, and thus motor fault diagnosis can be improved. In comparison with a single signal input, a multi-signal input provides greater accuracy and stability. As compared to other multi-signal feature fusion methods, such a deep learning model is able to extract fault features in a more comprehensive manner, which helps to improve the accuracy of motor fault diagnosis.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] A Bayesian CNN-based fusion framework of sensor fault diagnosis
    He, Beiyan
    Zhu, Chunli
    Li, Zhongxiang
    Hu, Chun
    Zheng, Dezhi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [2] Signals hierarchical feature enhancement method for CNN-based fault diagnosis
    Zhang, Huang
    Zhang, Shuyou
    Wang, Zili
    Qiu, Lemiao
    Zhang, Yiming
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (09)
  • [3] Quasi 1D CNN-based Fault Diagnosis of Induction Motor Drives
    Mukhopadhyay, Rajarshi
    Panigrahy, Parth Sarathi
    Misra, Gaurab
    Chattopadhyay, Paramita
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS (EPECS), 2018,
  • [4] RETRACTED: Application of CNN-Based Machine Learning in the Study of Motor Fault Diagnosis (Retracted Article)
    Peng, Xiuyan
    Wei, Lunpan
    Gao, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [5] Application of CNN-1d based on feature fusion in bearing fault diagnosis
    Fang, Hao Rub
    Chuang, Liu
    Qiang, Cheng Yong
    2020 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD 2020), 2020, : 195 - 200
  • [6] Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    de la Blanca, Nicolas
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17): : 14173 - 14193
  • [7] Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
    Francisco M. Castro
    Manuel J. Marín-Jiménez
    Nicolás Guil
    Nicolás Pérez de la Blanca
    Neural Computing and Applications, 2020, 32 : 14173 - 14193
  • [8] A CNN-Based Fusion Method for Feature Extraction from Sentinel Data
    Scarpa, Giuseppe
    Gargiulo, Massimiliano
    Mazza, Antonio
    Gaetano, Raffaele
    REMOTE SENSING, 2018, 10 (02)
  • [9] Image Block Regression Based on Feature Fusion for CNN-Based Spatial Steganalysis
    Chen, Ziqing
    Yu, Xiangyu
    Chen, Runze
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2021, 2022, 13180 : 258 - 272
  • [10] DeFFusion: CNN-based Continuous Authentication Using Deep Feature Fusion
    Li, Yantao
    Tao, Peng
    Deng, Shaojiang
    Zhou, Gang
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2022, 18 (02)