A compactness theorem for rotationally symmetric Riemannian manifolds with positive scalar curvature

被引:0
|
作者
Park, Jiewon [1 ]
Tian, Wenchuan [2 ]
Wang, Changliang [3 ]
机构
[1] 182 Mem Dr, Cambridge, MA 02139 USA
[2] 619 Red Cedar Rd,C212 Wells Hall, E Lansing, MI 48824 USA
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
Scalar curvature compactness; Sormani-Wenger intrinsic flat distance; rotationally symmetric manifolds;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Gromov and Sormani have conjectured the following compactness theorem on scalar curvature to hold. Given a sequence of compact Riemannian manifolds with nonnegative scalar curvature and bounded area of minimal surfaces, a subsequence is conjectured to converge in the intrinsic flat sense to a limit space, which has nonnegative generalized scalar curvature and Euclidean tangent cones almost everywhere. In this paper we prove this conjecture for sequences of rotationally symmetric warped product manifolds. We show that the limit space has an H-1 warping function which has nonnegative scalar curvature in a weak sense, and has Euclidean tangent cones almost everywhere.
引用
收藏
页码:529 / 561
页数:33
相关论文
共 50 条
  • [1] Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds
    Lee, Dan A.
    Sormani, Christina
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 686 : 187 - 220
  • [2] Rigidity of Riemannian manifolds with positive scalar curvature
    Huang, Guangyue
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (02) : 257 - 272
  • [3] Sewing Riemannian Manifolds with Positive Scalar Curvature
    J. Basilio
    J. Dodziuk
    C. Sormani
    [J]. The Journal of Geometric Analysis, 2018, 28 : 3553 - 3602
  • [4] Rigidity of Riemannian manifolds with positive scalar curvature
    Guangyue Huang
    [J]. Annals of Global Analysis and Geometry, 2018, 54 : 257 - 272
  • [5] Sewing Riemannian Manifolds with Positive Scalar Curvature
    Basilio, J.
    Dodziuk, J.
    Sormani, C.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) : 3553 - 3602
  • [6] THEOREM ON RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE OPERATOR
    TACHIBANA, S
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (04): : 301 - 302
  • [7] A compactness theorem in Riemannian manifolds
    Soylu Y.
    [J]. Journal of Geometry, 2018, 109 (1)
  • [8] A note on rigidity of Riemannian manifolds with positive scalar curvature
    Huang, Guangyue
    Zeng, Qianyu
    [J]. ARCHIV DER MATHEMATIK, 2020, 115 (04) : 457 - 465
  • [9] A note on rigidity of Riemannian manifolds with positive scalar curvature
    Guangyue Huang
    Qianyu Zeng
    [J]. Archiv der Mathematik, 2020, 115 : 457 - 465
  • [10] A sphere theorem for pinching positive scalar curvature manifolds
    Barbosa, Ezequiel R.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (02): : 194 - 204