Solving Problems With Over One Billion Unknowns by the MLFMA

被引:71
|
作者
Pan, Xiao-Min [1 ]
Pi, Wei-Chao [1 ]
Yang, Ming-Lin [1 ]
Peng, Zhen
Sheng, Xin-Qing [1 ]
机构
[1] Beijing Inst Technol, Ctr Electromagnet Simulat, Sch Informat & Elect, Beijing 100081, Peoples R China
关键词
Electromagnetic scattering; MPI; OpenMP; parallelization; shared memory systems; FAST MULTIPOLE ALGORITHM; PARALLEL MLFMA; SCATTERING; OBJECTS; OPENMP;
D O I
10.1109/TAP.2012.2189746
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using OpenMP to further accelerate the pure MPI parallel MLFMA, an efficient and flexible parallel multilevel fast multipole algorithm (MPI-OpenMP-MLFMA) is proposed. Compared with previous MPI parallel schemes, the MPI-OpenMP-MLFMA improves the load-balance and scalability greatly. The computational capability of the proposed MPI-OpenMP-MLFMA is demonstrated by computing scattering from two extremely large targets: a sphere with a diameter of 1200 wavelengths, modeled by 1,063,706,700 unknowns, and an airplane model with the largest dimension of 1600 wavelengths, involving 288,151,344 unknowns.
引用
收藏
页码:2571 / 2574
页数:4
相关论文
共 50 条
  • [1] Solving Electromagnetic Scattering Problems with Over 10 Billion Unknowns with the Parallel MLFMA
    Yang, Ming-Lin
    Du, Yu-Lin
    Sheng, Xin-Qing
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 355 - 360
  • [2] A Ternary Parallelization Approach of MLFMA for Solving Electromagnetic Scattering Problems With Over 10 Billion Unknowns
    Yang, Ming-Lin
    Wu, Bi-Yi
    Gao, Hong-Wei
    Sheng, Xin-Qing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (11) : 6965 - 6978
  • [3] Solving Electromagnetic Scattering Problems With Tens of Billions of Unknowns Using GPU Accelerated Massively Parallel MLFMA
    He, Wei-Jia
    Yang, Zeng
    Huang, Xiao-Wei
    Wang, Wu
    Yang, Ming-Lin
    Sheng, Xin-Qing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 5672 - 5682
  • [4] Solving Billions of Unknowns using the Parallel MLFMA and a Tier 1 Supercomputer
    Fostier, Jan
    Michiels, Bart
    Bogaert, Ignace
    De Zutter, Daniel
    2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 2015,
  • [5] New Iterative Methods for Solving Nonlinear Problems with One and Several Unknowns
    Behl, Ramandeep
    Cordero, Alicia
    Torregrosa, Juan R.
    Alshomrani, Ali Saleh
    MATHEMATICS, 2018, 6 (12):
  • [6] High scalability multipole method. Solving half billion of unknowns
    Mourino, J. C.
    Gomez, A.
    Taboada, J. M.
    Landesa, L.
    Bertolo, J. M.
    Obelleiro, F.
    Rodriguez, J. L.
    COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2009, 23 (3-4): : 169 - 175
  • [7] Solving Billion-Scale Knapsack Problems
    Zhang, Xingwen
    Qi, Feng
    Hua, Zhigang
    Yang, Shuang
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 3105 - 3111
  • [8] MLFMA Memory Reduction Techniques for Solving Large-Scale Problems
    Hidayetoglu, Mert
    Gurel, Levent
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 749 - 750
  • [9] Parallel hierarchical decomposition of finite element method with block diagonal symmetric Gauss-Seidel preconditioner for solving 3D problems with over ten billion unknowns
    Liu, Rui-Qing
    Yang, Ming-Lin
    Wu, Bi-Yi
    Sheng, Xin-Qing
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2020, 33 (05)
  • [10] PIE-MLFMA Implementation for Solving Complex Subwavelength Electromagnetic Problems
    Gur, Ugur Meric
    Cetin, Isa Can
    Karaosmanoglu, Bariscan
    Ergul, Ozgur
    2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,