On the hydrostatic approximation of the Navier-Stokes equations in a thin strip

被引:27
|
作者
Paicu, Marius [1 ]
Zhang, Ping [2 ,3 ,4 ]
Zhang, Zhifei [5 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Incompressible Navier-Stokes equations; Hydrostatic approximation; Radius of analyticity; ZERO VISCOSITY LIMIT; WELL-POSEDNESS; ANALYTIC SOLUTIONS; GLOBAL REGULARITY; PRANDTL SYSTEM; EXISTENCE; EULER;
D O I
10.1016/j.aim.2020.107293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove the global well-posedness of a scaled anisotropic Navier-Stokes system and the hydrostatic Navier-Stokes system in a 2-D striped domain with small analytic data in the tangential variable. Then we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes system with analytic data. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] THE HYDROSTATIC APPROXIMATION OF COMPRESSIBLE ANISOTROPIC NAVIER-STOKES EQUATIONS
    Gao, H.
    Necasova, S.
    Tang, T.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2022, 2022, : 59 - 64
  • [2] OPTIMAL GEVREY STABILITY OF HYDROSTATIC APPROXIMATION FOR THE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN
    Wang, Chao
    Wang, Yuxi
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (04) : 1521 - 1566
  • [3] Regularization by monotone perturbations of the hydrostatic approximation of Navier-Stokes equations
    Gallego, FO
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (12): : 1819 - 1848
  • [4] SOME ESTIMATES FOR THE ANISOTROPIC NAVIER-STOKES EQUATIONS AND FOR THE HYDROSTATIC APPROXIMATION
    BESSON, O
    LAYDI, MR
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (07): : 855 - 865
  • [5] Full Navier-Stokes equations in shallow water:: the hydrostatic approximation
    Azérad, P
    Guillén, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 961 - 966
  • [6] Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations
    Furukawa, Ken
    Giga, Yoshikazu
    Hieber, Matthias
    Hussein, Amru
    Kashiwabara, Takahito
    Wrona, Marc
    NONLINEARITY, 2020, 33 (12) : 6502 - 6516
  • [7] An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations
    Rebollo, TC
    González, FG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 841 - 846
  • [8] On the hydrostatic approximation of compressible anisotropic Navier-Stokes
    Gao, Hongjun
    Necasova, Sarka
    Tang, Tong
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (06) : 639 - 644
  • [9] Gevrey stability of hydrostatic approximate for the Navier-Stokes equations in a thin domain
    Wang, Chao
    Wang, Yuxi
    Zhang, Zhifei
    NONLINEARITY, 2021, 34 (10) : 7185 - 7226
  • [10] On the approximation of the stationary Navier-Stokes Equations
    Cristescu, I.A.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 61 (3-4): : 53 - 63