Approximation of Jain Operators by Statistical Convergence

被引:0
|
作者
Ispir, Nurhayat [1 ]
Deo, Naokant [2 ]
Bhardwaj, Neha [3 ]
机构
[1] Gazi Univ, Sci & Arts Fac, Dept Math, TR-06500 Teknikokullar, Turkey
[2] Delhi Technol Univ, Dept Appl Math, Bawana Rd, Delhi 110042, India
[3] Sharda Univ, Sch Basic Sci & Res, Dept Math, Greater Noida 201310, India
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 04期
关键词
Poisson distribution; Voronovskaya; A-statistical convergence; THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a positive linear operators P-n([beta]) introduced by Jain [G.C. Jain, Approximation of functions by a new class of linear positive operators, Jour. Austral. Math. Soc. 13 (3) (1972) 271-276] with the help of Poisson type distribution and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. We also compute the corresponding rate of A-statistical convergence for these operators.
引用
收藏
页码:1187 / 1197
页数:11
相关论文
共 50 条
  • [1] Approximation Properties of Generalized Jain Operators
    Dogru, O.
    Mohapatra, R. N.
    Orkcu, M.
    [J]. FILOMAT, 2016, 30 (09) : 2359 - 2366
  • [2] APPROXIMATION BY JAIN-SCHURER OPERATORS
    Cetin, Nursel
    Bascanbaz-Tunca, Gulen
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1343 - 1356
  • [3] ON MODIFICATION OF JAIN OPERATORS AND ITS APPROXIMATION PROPERTIES
    Patel, Prashantkumar
    Mishra, Vishnu narayan
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023,
  • [4] APPROXIMATION PROPERTIES OF JAIN-APPELL OPERATORS
    Ozarslan, Mehmet Ali
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (03) : 654 - 669
  • [5] Approximation Properties of Jain-Stancu Operators
    Ozarslan, Mehmet Ali
    [J]. FILOMAT, 2016, 30 (04) : 1081 - 1088
  • [6] Approximation by ?-Baskakov-Jain Type Operators
    Kajla, Arun
    Mohiuddine, S. A.
    Alotaibi, Abdullah
    [J]. FILOMAT, 2022, 36 (05) : 1733 - 1741
  • [7] Approximation by Integral form of Jain and Pethe Operators
    Naokant Deo
    Ram Pratap
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 31 - 38
  • [8] Approximation by modified Jain-Baskakov operators
    Mishra, Vishnu Narayan
    Sharma, Preeti
    Birou, Marius Mihai
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (03) : 403 - 412
  • [9] Approximation by Integral form of Jain and Pethe Operators
    Deo, Naokant
    Pratap, Ram
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) : 31 - 38
  • [10] Approximation results on nonlinear operators by Pp-statistical convergence
    Arif, Asiye
    Yurdakadim, Tugba
    [J]. ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, 15 (03): : 1 - 10