Best choice problems have a long mathematical history, but their neural underpinnings remain unknown. Best choice tasks are optimal stopping problem that require subjects to view a list of options one at a time and decide whether to take or decline each option. The goal is to find a high ranking option in the list, under the restriction that declined options cannot be chosen in the future. Conceptually, the decision to take or decline an option is related to threshold crossing in drift diffusion models, when this process is thought of as a value comparison. We studied this task in healthy volunteers using fMRI, and used a Markov decision process to quantify the value of continuing to search versus committing to the current option. Decisions to take versus decline an option engaged parietal and dorsolateral prefrontal cortices, as well ventral striatum, anterior insula, and anterior cingulate. Therefore, brain regions previously implicated in evidence integration and reward representation encode threshold crossings that trigger decisions to commit to a choice.