OPTIMAL SOBOLEV REGULARITY OF ROOTS OF POLYNOMIALS

被引:3
|
作者
Parusinski, Adam [1 ]
Rainer, Armin [2 ]
机构
[1] Univ Cote dAzur, CNRS, LJAD, UMR 7351, F-06108 Nice, France
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
LIFTING SMOOTH CURVES; COMPACT LIE-GROUPS; NONNEGATIVE FUNCTIONS; CHOOSING ROOTS; INVARIANTS; REPRESENTATIONS; PERTURBATION; SYMMETRIZATION; MAPPINGS; SYSTEMS;
D O I
10.24033/asens.2376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity of the roots of complex univariate polynomials whose coefficients depend smoothly on parameters. We show that any continuous choice of a root of a C-n-1,C-1-curve of monic polynomials of degree n is locally absolutely continuous with locally p-integrable derivatives for every 1 <= p < n/(n - 1), uniformly with respect to the coefficients. This result is optimal: in general, the derivatives of the roots of a smooth curve of monic polynomials of degree n are not locally n/(n - 1)-integrable, and the roots may have locally unbounded variation if the coefficients are only of class C-n-1,C-alpha for alpha < 1. We also prove a generalization of Ghisi and Gobbino's higher order Glaeser inequalities. We give three applications of the main results: local solvability of a system of pseudo-differential equations, a lifting theorem for mappings into orbit spaces of finite group representations, and a sufficient condition for multi-valued functions to be of Sobolev class W-1,W-p in the sense of Almgren.
引用
收藏
页码:1343 / 1387
页数:45
相关论文
共 50 条
  • [1] Regularity of roots of polynomials
    Parusinski, Adam
    Rainer, Armin
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (02) : 481 - 517
  • [2] On the regularity of the roots of hyperbolic polynomials
    Colombini, Ferruccio
    Orru, Nicola
    Pernazza, Ludovico
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (02) : 923 - 944
  • [3] On the regularity of the roots of hyperbolic polynomials
    Ferruccio Colombini
    Nicola Orrù
    Ludovico Pernazza
    [J]. Israel Journal of Mathematics, 2012, 191 : 923 - 944
  • [4] Optimal regularity for square roots
    Lions, PL
    Villani, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (12): : 1537 - 1541
  • [5] Optimal Regularity Properties of the Generalized Sobolev Spaces
    Karadzhov, G. E.
    Mehmood, Qaisar
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [6] Optimal Bounds for the Roots of Polynomials
    Anghel, Nicolae
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (09): : 931 - 935
  • [7] Minimal degree univariate piecewise polynomials with prescribed Sobolev regularity
    Al-Rashdan, Amal
    Johnson, Michael J.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2012, 164 (01) : 1 - 5
  • [8] Optimal Sobolev regularity of partial derivative on the Hartogs triangle
    Pan, Yifei
    Zhang, Yuan
    [J]. MATHEMATISCHE ANNALEN, 2024,
  • [9] SOBOLEV REGULARITY FOR OPTIMAL TRANSPORT MAPS OF NONCONVEX PLANAR DOMAINS
    Mooney, Connor
    Rakshit, Arghya
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4742 - 4758
  • [10] On roots and error constants of optimal stability polynomials
    Abdulle, A
    [J]. BIT NUMERICAL MATHEMATICS, 2000, 40 (01) : 177 - 182