Modeling and inference of animal movement using artificial neural networks

被引:24
|
作者
Tracey, Jeff A. [2 ,3 ]
Zhu, Jun [1 ,4 ]
Crooks, Kevin R. [2 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA
[3] SigmaLogist Consulting Inc, San Diego, CA USA
[4] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Circular Statistics; Genetic algorithm; Movement path; Semi-parametric model; Telemetry data; von Mises distribution; RESOURCE SELECTION;
D O I
10.1007/s10651-010-0138-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Movement of animals in relation to objects in their environment is important in many areas of ecology and wildlife conservation. Tools for analysis of movement data, however, still remain rather limited. In previous work, we developed nonlinear regression models for movement in relation to a single landscape feature. Here we greatly expand these previous models by using artificial neural networks. The new models add substantial flexibility and capabilities, including the ability to incorporate multiple factors and covariates. We devise a likelihood-based model fitting procedure that utilizes genetic algorithms and demonstrate the approach with movement data for red diamond rattlesnakes. The proposed methodology can be useful for global positioning system tracking data that are becoming more common in studies of animal movement behavior.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 50 条
  • [1] Modeling and inference of animal movement using artificial neural networks
    Jeff A. Tracey
    Jun Zhu
    Kevin R. Crooks
    [J]. Environmental and Ecological Statistics, 2011, 18 : 393 - 410
  • [2] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    [J]. Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [3] Modeling of pain using artificial neural networks
    Haeri, M
    Asemani, D
    Gharibzadeh, S
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2003, 220 (03) : 277 - 284
  • [4] Regular Inference on Artificial Neural Networks
    Mayr, Franz
    Yovine, Sergio
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2018, 2018, 11015 : 350 - 369
  • [5] A MOVEMENT PATTERN GENERATOR MODEL USING ARTIFICIAL NEURAL NETWORKS
    SRINIVASAN, S
    GANDER, RE
    WOOD, HC
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1992, 39 (07) : 716 - 722
  • [6] Spatiotemporal Prediction of Vehicle Movement Using Artificial Neural Networks
    Pihrt, Jiri
    Simanek, Petr
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 734 - 739
  • [7] Wastewater Pollutants Modeling Using Artificial Neural Networks
    Al Saleh, Hadeel Ali
    [J]. JOURNAL OF ECOLOGICAL ENGINEERING, 2021, 22 (07): : 35 - 45
  • [8] Modeling Prosopagnosia Using Dynamic Artificial Neural Networks
    Vandermeulen, Robyn
    Morissette, Laurence
    Chartier, Sylvain
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2074 - 2079
  • [9] Cutting force modeling using artificial neural networks
    Szecsi, T
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1999, 93 : 344 - 349
  • [10] Modeling of fuel consumption using artificial neural networks
    WITASZEK, Kazimierz
    [J]. Diagnostyka, 2020, 21 (04): : 103 - 113