On the commutative algebra of categories

被引:1
|
作者
Berman, John D. [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2018年 / 18卷 / 05期
关键词
Higher algebra; Lawvere theory; Operad;
D O I
10.2140/agt.2018.18.2963
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss what it means for a symmetric monoidal category to be a module over a commutative semiring category. Each of the categories of (1) cartesian monoidal categories, (2) semiadditive categories, and (3) connective spectra can be recovered in this way as categories of modules over a commutative semiring category (or infinity-category in the last case). This language provides a simultaneous generalization of the formalism of algebraic theories (operads, PROPs, Lawvere theories) and stable homotopy theory, with essentially a variant of algebraic K-theory bridging between the two.
引用
收藏
页码:2963 / 3012
页数:50
相关论文
共 50 条
  • [1] COMMUTATIVE ALGEBRA AND COMPUTER ALGEBRA
    LAZARD, D
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1982, 144 : 40 - 48
  • [2] On Commutative Algebra
    Chlouveraki, Maria
    [J]. BLOCKS AND FAMILIES FOR CYCLOTOMIC HECKE ALGEBRAS, 2009, 1981 : 1 - +
  • [3] Locally commutative categories
    Chattopadhyay, A
    Thérien, D
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 984 - 995
  • [4] A course in commutative algebra
    Lord, Nick
    [J]. MATHEMATICAL GAZETTE, 2013, 97 (539): : 369 - 369
  • [5] COMPUTER AND COMMUTATIVE ALGEBRA
    ROBBIANO, L
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 357 : 31 - 44
  • [6] Commutative bidifferential algebra
    Sanchez, Omar Leon
    Moosa, Rahim
    [J]. JOURNAL OF ALGEBRA, 2022, 609 : 764 - 791
  • [7] COMMUTATIVE NILPOTENT ALGEBRA
    DYMENT, ZM
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1972, 16 (04): : 299 - &
  • [8] Abelian Hessian algebra and commutative Frobenius algebra
    Choi, Yuncherl
    Kim, Hyuk
    Kim, Kyunghee
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 2236 - 2258
  • [9] Commutative algebras in Fibonacci categories
    Booker, Thomas
    Davydov, Alexei
    [J]. JOURNAL OF ALGEBRA, 2012, 355 (01) : 176 - 204