A profile-based deterministic sequential Monte Carlo algorithm for motif discovery

被引:9
|
作者
Liang, Kuo-Ching [1 ]
Wang, Xiaodong [1 ]
Anastassiou, Dimitris [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10025 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btm543
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Conserved motifs often represent biological significance, providing insight on biological aspects such as gene transcription regulation, biomolecular secondary structure, presence of non-coding RNAs and evolution history. With the increasing number of sequenced genomic data, faster and more accurate tools are needed to automate the process of motif discovery. Results: We propose a deterministic sequential Monte Carlo (DSMC) motif discovery technique based on the position weight matrix (PWM) model to locate conserved motifs in a given set of nucleotide sequences, and extend our model to search for instances of the motif with insertions/deletions. We show that the proposed method can be used to align the motif where there are insertions and deletions found in different instances of the motif, which cannot be satisfactorily done using other multiple alignment and motif discovery algorithms.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 50 条
  • [1] Iterative sequential Monte Carlo algorithm for motif discovery
    Al Bataineh, Mohammad
    Al-qudah, Zouhair
    Al-Zaben, Awad
    [J]. IET SIGNAL PROCESSING, 2016, 10 (05) : 504 - 513
  • [2] A sequential Monte Carlo method for motif discovery
    Liang, Kuo-ching
    Wang, Xiaodong
    Anastassiou, Dimitris
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (09) : 4496 - 4507
  • [3] Profile-based short linear protein motif discovery
    Niall J Haslam
    Denis C Shields
    [J]. BMC Bioinformatics, 13
  • [4] MProfiler: A Profile-Based Method for DNA Motif Discovery
    Altarawy, Doaa
    Ismail, Mohamed A.
    Ghanem, Sahar M.
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2009, 5780 : 13 - 23
  • [5] Profile-based short linear protein motif discovery
    Haslam, Niall J.
    Shields, Denis C.
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [6] Deterministic Sequential Monte Carlo for Haplotype Inference
    Ahn, Soyeon
    Vikalo, Hans
    [J]. 2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 64 - 64
  • [7] A Monte Carlo EM Algorithm for De Novo Motif Discovery in Biomolecular Sequences
    Bi, Chengpeng
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2009, 6 (03) : 370 - 386
  • [8] A Deterministic Sequential Monte Carlo Method for Haplotype Inference
    Liang, Kuo-ching
    Wang, Xiaodong
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (03) : 322 - 331
  • [9] Face Tracking Algorithm Based on Sequential Monte Carlo Filter
    Du, Yunming
    Yan, Bingbing
    Jiang, Yongcheng
    [J]. FRONTIERS OF ADVANCED MATERIALS AND ENGINEERING TECHNOLOGY, PTS 1-3, 2012, 430-432 : 1777 - +
  • [10] AN MPROVED SIR-BASED SEQUENTIAL MONTE CARLO ALGORITHM
    Lantherti, Roland
    Petetini, Yohan
    Septier, Francois
    Desbouvries, Francois
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,