A multi-level algorithm for the solution of moment problems

被引:7
|
作者
Scherzer, O
Strohmer, T
机构
[1] Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[2] Univ Vienna, Inst Math, A-1090 Vienna, Austria
关键词
moment problems; multi-level algorithms; Landweber-Richardson method; conjugate gradient method; nonuniform sampling;
D O I
10.1080/01630569808816833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerical methods for the solution of general linear moment problems, where the solution belongs to a family of nested subspaces of a Hilbert space. Multi-level algorithms, based on the conjugate gradient method and the Landweber-Richardson method are proposed that determine the "optimal" reconstruction level a posteriori from quantities that arise during the numerical calculations. As an important example we discuss the reconstruction of band-limited signals from irregularly spaced noisy samples, when the actual bandwidth of the signal is not available. Numerical examples show the usefulness of the proposed algorithms.
引用
收藏
页码:353 / 375
页数:23
相关论文
共 50 条
  • [1] Adaptive Multi-level Algorithm for a Class of Nonlinear Problems
    Kim, Dongho
    Park, Eun-Jae
    Seo, Boyoon
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (03) : 747 - 776
  • [2] A GPU-based multi-level algorithm for boundary value problems
    Becerra-Sagredo, Julian-Tercero
    Malaga, Carlos
    Mandujano, Francisco
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [3] An algorithm for non-linear multi-level integer programming problems
    Arora, Ritu
    Arora, S. R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2010, 3 (03) : 211 - 225
  • [4] A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems
    Hu, Liang
    Wu, Xianwei
    Che, Xilong
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (01): : 280 - 301
  • [5] Multi-level solution algorithm for steady-state Markov chains
    Horton, Graham
    Leutenegger, Scott T.
    [J]. Performance Evaluation Review, 1994, 22 (01): : 191 - 200
  • [6] Hybrid Algorithm for Rough Multi-level Multi-objective Decision Making Problems
    El-Feky S.F.
    Abou-El-Enien T.H.M.
    [J]. Ingenierie des Systemes d'Information, 2019, 24 (01): : 1 - 17
  • [7] Multi-level facility location problems
    Ortiz-Astorquiza, Camilo
    Contreras, Ivan
    Laporte, Gilbert
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 267 (03) : 791 - 805
  • [8] Multi-level ray tracing algorithm
    Reshetov, A
    Soupikov, A
    Hurley, J
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03): : 1176 - 1185
  • [9] AFOPT algorithm for multi-level databases
    Gyorödi, R
    Gyorödi, C
    Pater, M
    Boc, O
    David, Z
    [J]. Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 129 - 133
  • [10] Experiences with the multi-level algorithm.
    Majumdar, P
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 1021 - 1023