Exotic quantum criticality in one-dimensional coupled dipolar bosons tubes

被引:23
|
作者
Lecheminant, P. [1 ]
Nonne, H. [2 ]
机构
[1] Univ Cergy Pontoise, CNRS, UMR 8089, Lab Phys Theor & Modelisat, F-95300 Cergy Pontoise, France
[2] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 19期
关键词
2-DIMENSIONAL ISING-MODEL; CONFORMAL FIELD-THEORY; CHIRAL POTTS-MODEL; SINE-GORDON MODEL; ASYMMETRIC CLOCK; SUPERCONFORMAL INVARIANCE; ULTRACOLD GASES; DOMAIN-WALLS; BETHE-ANSATZ; PHASES;
D O I
10.1103/PhysRevB.85.195121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The competition between intertube hopping processes and density-density interactions is investigated in one-dimensional quantum dipolar bosons systems of N coupled tubes at zero temperature. Using a phenomenological bosonization approach, we show that the resulting competition leads to an exotic quantum phase transition described by a U(1) x Z(N) conformal field theory with a fractional central charge. The emerging Z(N) parafermionic critical degrees of freedom are highly nontrivial in terms of the original atoms or polar molecules of the model. We further determine the main physical properties of the quantum-critical point in a double-tube system which has central charge c = 3/2. In triple-tube systems, we show that the competition between the two antagonistic processes is related to the physics of the two-dimensional Z(3) chiral Potts model. This work opens the possibility to study the exotic properties of the Z(N) parafermions in the context of ultracold quantum Bose gases.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Dipolar bosons in a planar array of one-dimensional tubes
    Kollath, C.
    Meyer, Julia S.
    Giamarchi, T.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [2] Quantum phases of constrained dipolar bosons in coupled one-dimensional optical lattices
    Singh, Manpreet
    Mondal, Suman
    Sahoo, B. K.
    Mishra, Tapan
    [J]. PHYSICAL REVIEW A, 2017, 96 (05)
  • [3] Quantum phases of dipolar bosons in one-dimensional optical lattices
    Kraus, Rebecca
    Chanda, Titas
    Zakrzewski, Jakub
    Morigi, Giovanna
    [J]. PHYSICAL REVIEW B, 2022, 106 (03)
  • [4] Quantum phases of hard-core dipolar bosons in coupled one-dimensional optical lattices
    Safavi-Naini, A.
    Capogrosso-Sansone, B.
    Kuklov, A.
    [J]. PHYSICAL REVIEW A, 2014, 90 (04):
  • [5] Quantum criticality of spin-1 bosons in a one-dimensional harmonic trap
    Kuhn, C. C. N.
    Guan, X. W.
    Foerster, A.
    Batchelor, M. T.
    [J]. PHYSICAL REVIEW A, 2012, 86 (01):
  • [6] Bound states of dipolar bosons in one-dimensional systems
    Volosniev, A. G.
    Armstrong, J. R.
    Fedorov, D. V.
    Jensen, A. S.
    Valiente, M.
    Zinner, N. T.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [7] Fibonacci anyon excitations of one-dimensional dipolar lattice bosons
    Duric, Tanja
    Biedron, Krzysztof
    Zakrzewski, Jakub
    [J]. PHYSICAL REVIEW B, 2017, 95 (08)
  • [8] Dipolar oscillations of strongly correlated bosons on one-dimensional lattices
    Rigol, M.
    Rousseau, V.
    Scalettar, R. T.
    Singh, R. R. P.
    [J]. LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 45 - +
  • [9] Variational Bethe ansatz approach for dipolar one-dimensional bosons
    De Palo, S.
    Citro, R.
    Orignac, E.
    [J]. PHYSICAL REVIEW B, 2020, 101 (04)
  • [10] Dipolar Gases in Coupled One-Dimensional Lattices
    Bauer, Marianne
    Parish, Meera M.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (25)