Magnetoresistance of a two-dimensional electron gas in a one-dimensional superlattice defined by strong modulation fields

被引:6
|
作者
Zwerschke, SDM [1 ]
Gerhardts, RR [1 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
magnetotransport; lateral superlattices; magnetic and electric modulation;
D O I
10.1016/S0921-4526(98)00567-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Boltzmann's equation provides an adequate starting point of transport calculations for two-dimensional electron systems in the presence of periodic electric and magnetic modulation fields, both in the regime of the low-field positive magnetoresistance and of the Weiss oscillations at intermediate Values of the applied magnetic field. We solve Boltzmann's equation by the method of characteristics, which allows to exploit explicitly information about the structure of the phase space. This structure becomes very complicated if the amplitudes of the modulation fields become so large and the average magnetic field becomes so small that, in addition to the drifting cyclotron orbits, channeled orbits exist and drifting cyclotron orbits extend over many periods of the modulation. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 50 条
  • [1] DENSITY OF STATES IN A TWO-DIMENSIONAL ELECTRON-GAS IN A ONE-DIMENSIONAL SUPERLATTICE
    BYKOV, AA
    KVON, ZD
    OLSHANETSKII, EB
    [J]. SOVIET PHYSICS SEMICONDUCTORS-USSR, 1988, 22 (09): : 1077 - 1078
  • [2] Interference of commensurate and microwave-induced oscillations of the magnetoresistance of a two-dimensional electron gas in a one-dimensional lateral superlattice
    A. A. Bykov
    I. S. Strygin
    E. E. Rodyakina
    W. Mayer
    S. A. Vitkalov
    [J]. JETP Letters, 2015, 101 : 703 - 707
  • [3] Interference of commensurate and microwave-induced oscillations of the magnetoresistance of a two-dimensional electron gas in a one-dimensional lateral superlattice
    Bykov, A. A.
    Strygin, I. S.
    Rodyakina, E. E.
    Mayer, W.
    Vitkalov, S. A.
    [J]. JETP LETTERS, 2015, 101 (10) : 703 - 707
  • [4] DENSITY OF STATES IN A TWO-DIMENSIONAL ELECTRON-GAS IN THE PRESENCE OF A ONE-DIMENSIONAL SUPERLATTICE POTENTIAL
    WEISS, D
    ZHANG, C
    GERHARDTS, RR
    VONKLITZING, K
    WEIMANN, G
    [J]. PHYSICAL REVIEW B, 1989, 39 (17): : 13020 - 13023
  • [5] CLASSICAL MAGNETORESISTANCE OF A TWO-DIMENSIONAL ELECTRON-GAS IN A ONE-DIMENSIONAL SUPER-LATTICE
    GUSEV, GM
    KVON, ZD
    OVSYUK, VN
    [J]. JETP LETTERS, 1983, 37 (04) : 210 - 212
  • [6] Series of magnetoresistance oscillations of a two-dimensional electron gas in a strong periodic magnetic modulation
    Shi, QW
    Szeto, KY
    [J]. PHYSICAL REVIEW B, 1997, 55 (07): : 4558 - 4562
  • [7] Magnetoresistance of a two-dimensional electron gas in random magnetic fields
    Hansen, LT
    Taboryski, R
    Smith, A
    Lindelof, PE
    Hedegard, P
    [J]. SURFACE SCIENCE, 1996, 361 (1-3) : 349 - 352
  • [8] Magnetoresistance calculations for a two-dimensional electron gas with unilateral short-period strong modulation
    Vyborny, K
    Smrcka, L
    Deutschmann, RA
    [J]. PHYSICAL REVIEW B, 2002, 66 (20) : 1 - 8
  • [9] Magnetoresistance oscillation in a two-dimensional electron gas under periodic modulation of electric and magnetic fields
    Endo, A
    Izawa, S
    Katsumoto, S
    Iye, Y
    [J]. SURFACE SCIENCE, 1996, 361 (1-3) : 333 - 336
  • [10] Probing the band structure of a two-dimensional hole gas using a one-dimensional superlattice
    Brosh, B
    Simmons, MY
    Holmes, SN
    Hamilton, AR
    Ritchie, DA
    Pepper, M
    [J]. PHYSICAL REVIEW B, 1996, 54 (20): : 14273 - 14276