Microfiltration Membranes for the Removal of Bisphenol A from Aqueous Solution: Adsorption Behavior and Mechanism

被引:4
|
作者
Sun, Jiaoxia [1 ]
Jiang, Xueting [1 ]
Zhou, Yao [1 ]
Fan, Jianxin [1 ]
Zeng, Guoming [2 ]
机构
[1] Chongqing Jiaotong Univ, Sch River & Ocean Engn, Chongqing 400074, Peoples R China
[2] Chongqing Univ Sci & Technol, Sch Architecture & Engn, Chongqing 401331, Peoples R China
关键词
microfiltration membranes; bisphenol A; adsorption mechanism; hydrogen bonding; hydrophobic interaction; ENDOCRINE DISRUPTING COMPOUNDS; ENERGY-DISTRIBUTION ANALYSIS; ETHINYLESTRADIOL EE2; POROUS MEMBRANES; TREATMENT PLANTS; PVDF MEMBRANE; WASTE-WATER; TAIHU LAKE; SORPTION; OIL;
D O I
10.3390/w14152306
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study mainly investigated the adsorption behavior and mechanism of microfiltration membranes (MFMs) with different physiochemical properties (polyamide (PA), polyvinylidene fluoride (PVDF), nitrocellulose (NC), and polytetrafluoroethylene (PTFE)) for bisphenol A (BPA). According to the adsorption isotherm and kinetic, the maximum adsorption capacity of these MFMs was PA (161.29 mg/g) > PVDF (80.00 mg/g) > NC (18.02 mg/g) > PTFE (1.56 mg/g), and the adsorption rate was PVDF (K-1 = 2.373 h(-1)) > PA (K-1 = 1.739 h(-1)) > NC (K-1 = 1.086 h(-1)). The site energy distribution analysis showed that PA MFMs had the greatest adsorption sites, followed by PVDF and NC MFMs. The study of the adsorption mechanism suggested that the hydrophilic microdomain and hydrophobic microdomain had a micro-separation for PA and PVDF, which resulted in a higher adsorption capacity of PA and PVDF MFMs. The hydrophilic microdomain providing hydrogen bonding sites and the hydrophobic microdomain providing hydrophobic interaction, play a synergetic role in improving the BPA adsorption. Due to the hydrogen bonding force being greater than the hydrophobic force, more hydrogen bonding sites on the hydrophobic surface resulted in a higher adsorption capacity, but the hydrophobic interaction contributed to improving the adsorption rate. Therefore, the distribution of the hydrophilic microdomain and hydrophobic microdomain on MFMs can influence the adsorption capacity and the adsorption rate for BPA or its analogues. These consequences provide a novel insight for better understanding the adsorption behavior and mechanism on MFMs.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Removal of Pb(Ⅱ) from aqueous solution by hydrous manganese dioxide:Adsorption behavior and mechanism
    Meng Xu
    Hongjie Wang
    Di Lei
    Dan Qu
    Yujia Zhai
    Yili Wang
    Journal of Environmental Sciences, 2013, 25 (03) : 479 - 486
  • [2] Removal of Pb(Ⅱ) from aqueous solution by hydrous manganese dioxide:Adsorption behavior and mechanism
    Meng Xu
    Hongjie Wang
    Di Lei
    Dan Qu
    Yujia Zhai
    Yili Wang
    Journal of Environmental Sciences, 2013, (03) : 479 - 486
  • [3] Removal of humic acid from aqueous solution by magnetically separable polyaniline: Adsorption behavior and mechanism
    Wang, Jiahong
    Bi, Lijuan
    Ji, Yanfen
    Ma, Hongrui
    Yin, Xiaolong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 430 : 140 - 146
  • [4] Synergistic removal of U(VI) from aqueous solution by TAC material: Adsorption behavior and mechanism
    Bao, Yunyun
    Liu, Yan
    Wang, Changfu
    Wang, Yun
    Yuan, Dingzhong
    Xu, Jianda
    Zhu, Zuqing
    He, Yan
    Liu, Jinbiao
    APPLIED RADIATION AND ISOTOPES, 2022, 190
  • [5] Removal of Pb(II) from aqueous solution by hydrous manganese dioxide: Adsorption behavior and mechanism
    Xu, Meng
    Wang, Hongjie
    Lei, Di
    Qu, Dan
    Zhai, Yujia
    Wang, Yili
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2013, 25 (03) : 479 - 486
  • [6] Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption
    Xu, Jing
    Wang, Li
    Zhu, Yongfa
    LANGMUIR, 2012, 28 (22) : 8418 - 8425
  • [7] Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water
    Han, Jie
    Qiu, Wei
    Hu, Jiangyong
    Gao, Wei
    WATER RESEARCH, 2012, 46 (03) : 873 - 881
  • [8] Removal of cadmium from aqueous solution by magnetic biochar: adsorption characteristics and mechanism
    Li, Zhiwen
    Niu, Ruiyan
    Yu, Jiaheng
    Yu, Liyun
    Cao, Di
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (04) : 6543 - 6557
  • [9] Removal of cadmium from aqueous solution by magnetic biochar: adsorption characteristics and mechanism
    Zhiwen Li
    Ruiyan Niu
    Jiaheng Yu
    Liyun Yu
    Di Cao
    Environmental Science and Pollution Research, 2024, 31 : 6543 - 6557
  • [10] Removal of phenol from aqueous solution by adsorption
    Kaleta, Jadwiga
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2006, 33 (05) : 546 - 551