Rank-r decomposition of symmetric tensors

被引:1
|
作者
Wen, Jie [1 ]
Ni, Qin [1 ]
Zhu, Wenhuan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Symmetric tensor; symmetric rank; decomposition; generating polynomial; catalectieant matrix; POLYNOMIALS;
D O I
10.1007/s11464-017-0632-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algorithm is presented for decomposing a symmetric tensor into a sum of rank-1 symmetric tensors. For a given tensor, by using apolarity, catalecticant matrices and the condition that the mapping matrices are commutative, the rank of the tensor can be obtained by iteration. Then we can find the generating polynomials under a selected basis set. The decomposition can be constructed by the solutions of generating polynomials under the condition that the solutions are all distinct which can be guaranteed by the commutative property of the matrices. Numerical examples demonstrate the efficiency and accuracy of the proposed method.
引用
收藏
页码:1339 / 1355
页数:17
相关论文
共 50 条
  • [1] Rank-r decomposition of symmetric tensors
    Jie Wen
    Qin Ni
    Wenhuan Zhu
    [J]. Frontiers of Mathematics in China, 2017, 12 : 1339 - 1355
  • [2] COMON'S CONJECTURE, RANK DECOMPOSITION, AND SYMMETRIC RANK DECOMPOSITION OF SYMMETRIC TENSORS
    Zhang, Xinzhen
    Huang, Zheng-Hai
    Qi, Liqun
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) : 1719 - 1728
  • [3] Alternate algorithms to most referenced techniques of numerical optimization to solve the symmetric rank-R approximation problem of symmetric tensors
    Jing, Jiayin
    Ni, Guyan
    Chen, Ciwen
    Yang, Bo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [4] Rank-r approximation of tensors using image-as-matrix representation
    Wang, HC
    Ahuja, N
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 346 - 353
  • [5] Additive maps of rank r tensors and symmetric tensors
    Chooi, Wai Leong
    Kwa, Kiam Heong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (06): : 1269 - 1293
  • [6] On the decomposition of symmetric tensors into traceless symmetric tensors
    Jaric, JP
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (18) : 2123 - 2141
  • [7] REMARKS ON THE SYMMETRIC RANK OF SYMMETRIC TENSORS
    Friedland, Shmuel
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) : 320 - 337
  • [8] Computing symmetric rank for symmetric tensors
    Bernardi, Alessandra
    Gimigliano, Alessandro
    Ida, Monica
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) : 34 - 53
  • [9] SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK
    Comon, Pierre
    Golub, Gene
    Lim, Lek-Heng
    Mourrain, Bernard
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1254 - 1279
  • [10] Partially symmetric tensor structure preserving rank-R approximation via BFGS algorithm
    Ciwen Chen
    Guyan Ni
    Bo Yang
    [J]. Computational Optimization and Applications, 2023, 85 : 621 - 652