Meta-Learned Specific Scenario Interest Network for User Preference Prediction

被引:3
|
作者
Sun, Yinan [1 ]
Yin, Kang [2 ]
Liu, Hehuan [3 ]
Li, Si [1 ]
Xu, Yajing [1 ]
Guo, Jun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Beijing Univ Technol, Beijing, Peoples R China
关键词
User Preference Prediction; Meta-Learning; Specific Scenario; Recommendation System;
D O I
10.1145/3404835.3463077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
User preference prediction is a task of learning user interests through user-item interactions. Most existing studies capture user interests based on historical behaviors without considering specific scenario information. However, the users may have special interests in these specific scenarios and sometimes user historical behaviors are limited. In this paper, we propose a Meta-Learned Specific Scenario Interest Network (Meta-SSIN) to predict user preference of target item by capturing specific scenario interests. Meta-SSIN uses multiple independent meta-learning modules to model historical behaviors in each scenario. The independent module can capture special interests based on limited behaviors. Experimental results on three datasets show that Meta-SSIN outperforms compared state-of-the-art methods.
引用
收藏
页码:1970 / 1974
页数:5
相关论文
共 26 条
  • [1] Meta-Learned User Preference for Topic Participation Prediction
    Zhou, Fan
    Qi, Xiuxiu
    Xu, Xovee
    Wang, Jiahao
    Zhong, Ting
    Trajcevski, Goce
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [2] MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation
    Lee, Hoyeop
    Im, Jinbae
    Jang, Seongwon
    Cho, Hyunsouk
    Chung, Sehee
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1073 - 1082
  • [3] Library user interest preference prediction based on bp neural network
    Yan, W.
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 37 - 38
  • [4] Probabilistic metabolite annotation using retention time prediction and meta-learned projections
    Constantino A. García
    Alberto Gil-de-la-Fuente
    Coral Barbas
    Abraham Otero
    [J]. Journal of Cheminformatics, 14
  • [5] Probabilistic metabolite annotation using retention time prediction and meta-learned projections
    Garcia, Constantino A.
    Gil-de-la-Fuente, Alberto
    Barbas, Coral
    Otero, Abraham
    [J]. JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
  • [6] Learn TAROT with MENTOR: A Meta-Learned Self-supervised Approach for Trajectory Prediction
    Pourkeshavarz, Mozhgan
    Chen, Changhe
    Rasouli, Amir
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8350 - 8359
  • [7] Domain-specific user preference prediction based on multiple user activities
    Long, Yunfei
    Lu, Qin
    Xiao, Yue
    Li, MingLei
    Huang, Chu-Ren
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3913 - 3921
  • [8] Application of clustering algorithm in social network user scenario prediction
    Wen, Xiaoxian
    Ma, Yunhui
    Fu, Jiaxin
    Li, Jing
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 4971 - 4979
  • [9] Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network
    Lee, Changhwan
    Jang, Jongseong
    Lee, Seunghun
    Kim, Young Soo
    Jo, Hang Joon
    Kim, Yeesuk
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network
    Changhwan Lee
    Jongseong Jang
    Seunghun Lee
    Young Soo Kim
    Hang Joon Jo
    Yeesuk Kim
    [J]. Scientific Reports, 10