Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order

被引:53
|
作者
Fan, Yi-Zheng [2 ]
Tam, Bit-Shun [1 ]
Zhou, Jun [2 ]
机构
[1] Tamkang Univ, Dept Math, Tamsui 251, Taiwan
[2] Anhui Univ, Sch Math & Computat Sci, Hefei 230039, Anhui, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2008年 / 56卷 / 04期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
unoriented Laplacian matrix; spectral radius; bicyclic graph;
D O I
10.1080/03081080701306589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every integer n >= 4, it is proved that there is a unique graph of order n which maximizes the spectral radius of the unoriented Laplacian matrix over all bicyclic graphs of order n, namely, the graph obtained from the cycle C-4 by first adding a chord and then attaching n-4 pendant edges to one end of the chord.
引用
收藏
页码:381 / 397
页数:17
相关论文
共 50 条
  • [1] The Laplacian spectral radius of bicyclic graphs with a given girth
    Zhai, Mingping
    Yu, Guanglong
    Shu, Jinlong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 376 - 381
  • [2] The Laplacian spectral radius for bicyclic graphs with given independence number
    Wang, Guoping
    Guo, Guangquan
    ARS COMBINATORIA, 2017, 130 : 275 - 287
  • [3] THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF BICYCLIC GRAPHS WITH A GIVEN GIRTH
    Zhu, Zhongxun
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 378 - 388
  • [4] The Signless Laplacian Spectral Radius of Unicyclic and Bicyclic Graphs with a Given Girth
    Li, Ke
    Wang, Ligong
    Zhao, Guopeng
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [5] Maximizing the signless Laplacian spectral radius of graphs with given diameter or cut vertices
    Wang, Jianfeng
    Huang, Qiongxiang
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (07): : 733 - 744
  • [6] On the distance Laplacian spectral radius of bicyclic graphs
    Xu, Nannan
    Yu, Aimei
    Hao, Rong-Xia
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4654 - 4674
  • [7] The Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges
    Hong, Zhen-Mu
    Fan, Yi-Zheng
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1473 - 1485
  • [8] The Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges
    Zhen-Mu Hong
    Yi-Zheng Fan
    Graphs and Combinatorics, 2015, 31 : 1473 - 1485
  • [9] Graphs with given diameter maximizing the spectral radius
    van Dam, E. R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 454 - 457
  • [10] The Laplacian spectral radius of graphs with given connectivity
    Feng, Lihua
    Ilic, Aleksandar
    ARS COMBINATORIA, 2012, 104 : 489 - 495