Supercritical Conformal Metrics on Surfaces with Conical Singularities

被引:69
|
作者
Bartolucci, Daniele [2 ]
De Marchis, Francesca [1 ]
Malchiodi, Andrea [1 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Univ Roma Tor Vergata, I-00133 Rome, Italy
关键词
MEAN-FIELD EQUATIONS; GAUSSIAN CURVATURE; LIOUVILLE TYPE; INEQUALITY; EXISTENCE; DEFORMATION; TRUDINGER; BLOW;
D O I
10.1093/imrn/rnq285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.
引用
收藏
页码:5625 / 5643
页数:19
相关论文
共 50 条