Preserving Semantic Relations for Zero-Shot Learning

被引:178
|
作者
Annadani, Yashas [1 ,3 ,4 ,5 ]
Biswas, Soma [2 ]
机构
[1] Natl Inst Technol, Mangalore, Karnataka, India
[2] Indian Inst Sci, Bengaluru, India
[3] IIIT H, Hyderabad, Telangana, India
[4] NITK, Mangalore, India
[5] IISc, Bengaluru, India
关键词
D O I
10.1109/CVPR.2018.00793
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned by the attributes using a set of relations. We devise objective functions to preserve these relations in the embedding space, thereby inducing semanticity to the embedding space. Through extensive experimental evaluation on five benchmark datasets, we demonstrate that inducing semanticity to the embedding space is beneficial for zero-shot learning. The proposed approach outperforms the state-of-the-art on the standard zero-shot setting as well as the more realistic generalized zero-shot setting. We also demonstrate how the proposed approach can be useful for making approximate semantic inferences about an image belonging to a category for which attribute information is not available.
引用
收藏
页码:7603 / 7612
页数:10
相关论文
共 50 条
  • [1] Semantic Autoencoder for Zero-Shot Learning
    Kodirov, Elyor
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4447 - 4456
  • [2] Learning semantic ambiguities for zero-shot learning
    Hanouti, Celina
    Le Borgne, Herve
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40745 - 40759
  • [3] Learning semantic ambiguities for zero-shot learning
    Celina Hanouti
    Hervé Le Borgne
    Multimedia Tools and Applications, 2023, 82 : 40745 - 40759
  • [4] Adversarial Zero-Shot Learning with Semantic Augmentation
    Tong, Bin
    Klinkigt, Martin
    Chen, Junwen
    Cui, Xiankun
    Kong, Quan
    Murakami, Tomokazu
    Kobayashi, Yoshiyuki
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2476 - 2483
  • [5] Semantic softmax loss for zero-shot learning
    Ji, Zhong
    Sun, Yuxin
    Yu, Yunlong
    Guo, Jichang
    Pang, Yanwei
    NEUROCOMPUTING, 2018, 316 : 369 - 375
  • [6] Learning exclusive discriminative semantic information for zero-shot learning
    Mi, Jian-Xun
    Zhang, Zhonghao
    Tai, Debao
    Zhou, Li-Fang
    Jia, Wei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 761 - 772
  • [7] A meaningful learning method for zero-shot semantic segmentation
    Liu, Xianglong
    Bai, Shihao
    An, Shan
    Wang, Shuo
    Liu, Wei
    Zhao, Xiaowei
    Ma, Yuqing
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (11)
  • [8] Attentive Semantic Preservation Network for Zero-Shot Learning
    Lu, Ziqian
    Yu, Yunlong
    Lu, Zhe-Ming
    Shen, Feng-Li
    Zhang, Zhongfei
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 2919 - 2925
  • [9] Zero-Shot Learning on Semantic Class Prototype Graph
    Fu, Zhenyong
    Xiang, Tao
    Kodirov, Elyor
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (08) : 2009 - 2022
  • [10] Joint Visual and Semantic Optimization for zero-shot learning
    Wu, Hanrui
    Yan, Yuguang
    Chen, Sentao
    Huang, Xiangkang
    Wu, Qingyao
    Ng, Michael K.
    KNOWLEDGE-BASED SYSTEMS, 2021, 215 (215)