Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+

被引:50
|
作者
Qu, Ping [1 ,2 ,3 ,4 ]
Li, Yuncong [4 ]
Huang, Hongying [1 ,2 ]
Chen, Jianjun [5 ]
Yu, Zebin [6 ]
Huang, Jun [7 ,8 ]
Wang, Hailong [9 ,10 ]
Gao, Bin [3 ]
机构
[1] Jiangsu Acad Agr Sci, Key Lab Crop & Livestock Integrated Farming, Minist Agr, Recycling Agr Res Ctr, Nanjing, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Solid Organ Waste, Nanjing 210014, Jiangsu, Peoples R China
[3] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32606 USA
[4] Univ Florida, Soil & Water Sci Dept, Trop Res & Educ Ctr, Homestead, FL 33031 USA
[5] Univ Florida, Mid Florida Res & Educ Ctr, Apopka, FL 32703 USA
[6] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[7] Hualan Design & Consulting Grp Co Ltd, Nanning 530011, Peoples R China
[8] Guangxi Univ, Coll Civil Engn & Architecture, Nanning 530004, Peoples R China
[9] Foshan Univ, Sch Environm & Chem Engn, Foshan 528000, Guangdong, Peoples R China
[10] Zhejiang A&F Univ, Key Lab Soil Contaminat Bioremediat Zhejiang Prov, Hangzhou 311300, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium alginate; Pb(II); Cu(II); Cd(II); adsorption mechanisms; ZERO-VALENT IRON; CALCIUM-ALGINATE; AQUEOUS-SOLUTION; ADSORPTION PERFORMANCE; SODIUM ALGINATE; CROSS-LINKING; HEAVY-METALS; CHITOSAN; RECOVERY; BIOCHAR;
D O I
10.1016/j.jhazmat.2020.122664
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urea formaldehyde (UF) was grafted onto the backbone of alginate to prepare microbeads as an adsorbent for the removal of heavy metal ions from aqueous solutions. The expensive alginate was crosslinked with cheaper UF at different ratios (1: 2.5 similar to 1: 12.5) to produce sturdy alginate-UF beads at lower cost. Characterization results showed that UF modification enhanced the pore network and structural stability of the beads, which can be attributed to the reduced intermolecular forces and plentiful of nitrogen and oxygen donor atoms of the beads. The swelling of air-dried alginate-UF beads in different solutions was much lower than that of the unmodified alginate beads, confirming the improved stability. The replacement of alginate with UF at different ratios either did not affect or increased the adsorption of heavy metal ions (Pb2+, Cd2+, and Cu2+) on the beads. For example, the adsorption capacities of Pb2+, Cd2+, and Cu2+ on air-dried alginate-UF (1: 2.5) beads were 1.66, 0.61, and 0.80 mmol/g, which were 39.88%, 9.29%, and 9.52% higher than those of the corresponding unmodified alginate beads, respectively. The adsorption of heavy metals on the alginate-UF beads was mainly controlled by ion exchange, complexation, and electrostatic interaction mechanisms.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Adsorption of Pb2+, Cu2+ and Cd2+ by sulfhydryl modified chitosan beads
    Yang, Yuru
    Zeng, Lei
    Lin, Zongkun
    Jiang, Huabin
    Zhang, Aiping
    CARBOHYDRATE POLYMERS, 2021, 274
  • [2] REMOVAL OF Cd2+, Cu2+ AND Pb2+ WITH A BURKINA FASO CLAY
    Sorgho, Brahima
    Mahamane, Abdoulkadri Ayouba
    Guel, Boubie
    Zerbo, Lamine
    Gomina, Moussa
    Blanchart, Philippe
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2016, 17 (04): : 365 - 379
  • [3] Enhanced Removal of Pb2+, Cu2+, and Cd2+ by Amino-Functionalized Magnetite/Kaolin Clay
    Qin, Lilu
    Yan, Liangguo
    Chen, Jian
    Liu, Tiantian
    Yu, Haiqin
    Du, Bin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (27) : 7344 - 7354
  • [4] Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data
    Papageorgiou, S. K.
    Katsaros, F. K.
    Kouvelos, E. P.
    Kanellopoulos, N. K.
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (2-3) : 1347 - 1354
  • [5] STABILITY-CONSTANTS OF CU2+, PB2+, AND CD2+ COMPLEXES WITH HUMIC ACIDS
    STEVENSON, FJ
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1976, 40 (05) : 665 - 672
  • [6] Cd2+, Cu2+, and Pb2+ sorption, desorption and migration in Fluvisols
    Arenas-Lago, D.
    Rodriguez-Seijo, A.
    Cerqueira, B.
    Andrade, M. L.
    Vega, F. A.
    SPANISH JOURNAL OF SOIL SCIENCE, 2015, 5 (03): : 276 - 295
  • [7] Poly (methacrylic acid) modified biomasss for enhancement adsorption of Pb2+, Cd2+ and Cu2+
    Yu, Junxia
    Tong, Mi
    Sun, Xiaomei
    Li, Buhai
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (06) : 558 - 565
  • [8] Study on Removal of Heavy Metal Ions (Pb2+, Cd2+ and Cu2+) by Coriandrum sativum (Coriander)
    Bahloul, A.
    Zouaoui, H.
    Diafat, A.
    Meribai, A.
    Noufel, Y.
    Derrardja, M.
    Nessark, B.
    JOURNAL OF WATER CHEMISTRY AND TECHNOLOGY, 2020, 42 (03) : 157 - 163
  • [9] Study on Removal of Heavy Metal Ions (Pb2+, Cd2+ and Cu2+) by Coriandrum sativum (Coriander)
    A. Bahloul
    H. Zouaoui
    A. Diafat
    A. Meribai
    Y. Noufel
    M. Derrardja
    B. Nessark
    Journal of Water Chemistry and Technology, 2020, 42 : 157 - 163
  • [10] Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder
    Takeuchi, Yasushi
    Arai, Hironori
    Journal of Chemical Engineering of Japan, 1990, 23 (01): : 75 - 80