Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design

被引:26
|
作者
Xu, Haoran [1 ]
Chen, Bin [1 ]
Tan, Peng [1 ]
Xuan, Jin [2 ]
Maroto-Valer, M. Mercedes [2 ]
Farrusseng, David [3 ]
Sun, Qiong [4 ]
Ni, Meng [1 ,5 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Bldg Energy Res Grp, Hung Hom,Kowloon, Hong Kong, Peoples R China
[2] Heriot Watt Univ, Sch Engn & Phys Sci, RCCS, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Lyon 1, IRCELYON, Inst Rech Catalyse & Environm Lyon, CNRS, 2 Av Albert Einstein, F-69626 Villeurbanne, France
[4] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
[5] Hong Kong Polytech Univ, RISUD, Environm Energy Res Grp, Hung Hom,Kowloon, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
All porous solid oxide fuel cell; Methane coking; Carbon deposition; Mathematical modeling; Novel design; PERFORMANCE DIRECT CARBON; STEAM; SOFC; GAS; METHANE; TECHNOLOGY; TRANSPORT; HEAT; CO;
D O I
10.1016/j.apenergy.2018.10.069
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Conventional solid oxide fuel cells (SOFCs) could suffer from carbon deposition when fueled with hydrocarbons. For comparison, a new type of SOFC with porous electrolyte can resist carbon deposition because it allows oxygen molecules to transport from the cathode to the anode. As the transport of O-2 to the anode lowers the fuel cell performance and causes the risk of explosion, the rate of O-2 transport must be well controlled to ensure efficient and safe operation. Following our previous model, this paper focuses on electrolyte porosity optimization under various inlet methane mole fractions, inlet oxygen mole fractions and inlet gas flow rates. Furthermore, a new design with a partial porous electrolyte is proposed and numerically evaluated. The new design significantly improves the electrochemical performance compared with all-porous one. A conversion rate >90% from methane to syngas is achieved at the 0.33 inlet CH4 mole fraction with the new design. The results enhance the understanding of all porous solid oxide fuel cells and the mechanism underlying, inspiring novel designs of solid oxide fuel cells.
引用
收藏
页码:602 / 611
页数:10
相关论文
共 50 条
  • [1] Modeling of all porous solid oxide fuel cells
    Xu, Haoran
    Chen, Bin
    Tan, Peng
    Cai, Weizi
    He, Wei
    Farrusseng, David
    Ni, Meng
    APPLIED ENERGY, 2018, 219 : 105 - 113
  • [2] The thermal effects of all porous solid oxide fuel cells
    Xu, Haoran
    Chen, Bin
    Tan, Peng
    Zhang, Yuan
    He, Qijiao
    Wu, Zhen
    Ni, Meng
    JOURNAL OF POWER SOURCES, 2019, 440
  • [3] Modeling of solid electrolyte fuel cells
    Dunbar, W.R.
    Gaggioli, R.A.
    Soil Dynamics and Earthquake Engineering, 1991, 10 (01)
  • [4] Fabrication of Porous Structure with Scandia Stabilized Zirconia Electrolyte for Solid Oxide Fuel Cells
    Peck, D. H.
    Choi, Y. H.
    Woo, S. K.
    Song, R. H.
    Wackerl, J.
    Markus, T.
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 2187 - +
  • [5] Modeling of Solid Oxide Fuel Cells with Particle Size and Porosity Grading in Anode Electrode
    Liu, L.
    Flesner, R.
    Kim, G. -Y.
    Chandra, A.
    FUEL CELLS, 2012, 12 (01) : 97 - 108
  • [6] Porous oxide electrolyte membranes for fuel cells.
    Tejedor-Tejedor, MI
    Anderson, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U325 - U325
  • [7] Modeling of solid oxide fuel cells
    Meng Ni
    Science Bulletin, 2016, 61 (17) : 1311 - 1312
  • [8] Modeling of solid oxide fuel cells
    Ni, Meng
    SCIENCE BULLETIN, 2016, 61 (17) : 1311 - 1312
  • [9] Micro-modeling of porous composite anodes for solid oxide fuel cells
    Farhad, Siamak
    Hamdullahpur, Feridun
    AICHE JOURNAL, 2012, 58 (06) : 1893 - 1906
  • [10] A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells
    Liu, Shixue
    Kong, Wei
    Lin, Zijing
    ENERGIES, 2009, 2 (02): : 427 - 444