FINITE DIMENSIONAL REDUCTION AND CONVERGENCE TO EQUILIBRIUM FOR INCOMPRESSIBLE SMECTIC-A LIQUID CRYSTAL FLOWS

被引:17
|
作者
Segatti, Antonio [1 ]
Wu, Hao [2 ,3 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
关键词
smectic-A liquid crystal flow; global attractor; exponential attractor; convergence to equilibrium; stability; EXPONENTIAL ATTRACTORS; EVOLUTION-EQUATIONS; TIME BEHAVIOR; SYSTEM;
D O I
10.1137/100813427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a hydrodynamic system that models smectic-A liquid crystal flow. The model consists of the Navier-Stokes equation for the fluid velocity coupled with a fourth-order equation for the layer variable, endowed with periodic boundary conditions. We analyze the longtime behavior of the solutions within the theory of infinite-dimensional dissipative dynamical systems. We first prove that in two dimensions, the problem possesses a global attractor A in a certain phase space. Then we establish the existence of an exponential attractor M, which entails that the global attractor A has finite fractal dimension. Moreover, we show that each trajectory converges to a single equilibrium by means of a suitable Lojasiewicz-Simon inequality. Corresponding results in three dimensions are also discussed.
引用
收藏
页码:2445 / 2481
页数:37
相关论文
共 50 条
  • [1] On Well-Posedness and Decay of Strong Solutions for 3D Incompressible Smectic-A Liquid Crystal Flows
    Xiaopeng Zhao
    Yong Zhou
    Journal of Nonlinear Science, 2022, 32
  • [2] On Well-Posedness and Decay of Strong Solutions for 3D Incompressible Smectic-A Liquid Crystal Flows
    Zhao, Xiaopeng
    Zhou, Yong
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
  • [3] Chiral twisting of a smectic-A liquid crystal
    Spector, M.S.
    Prasad, S.K.
    Weslowski, B.T.
    Kamien, R.D.
    Selinger, J.V.
    Ratna, B.R.
    Shashidhar, R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 3977 - 3983
  • [4] Polarization bistability in a smectic-A liquid crystal
    Pura, B
    Wierzbicki, M
    Petykiewicz, J
    Ratusznik, G
    Wrzesinski, Z
    OPTICA APPLICATA, 2001, 31 (03) : 619 - 624
  • [5] PLASTICITY IN A SMECTIC-A LIQUID-CRYSTAL
    BARTOLINO, R
    DURAND, G
    PHYSICAL REVIEW LETTERS, 1977, 39 (21) : 1346 - 1349
  • [6] Chiral twisting of a smectic-A liquid crystal
    Spector, MS
    Prasad, SK
    Weslowski, BT
    Kamien, RD
    Selinger, JV
    Ratna, BR
    Shashidhar, R
    PHYSICAL REVIEW E, 2000, 61 (04): : 3977 - 3983
  • [7] Smectic-A ordering in liquid crystal films
    MartinezRaton, Y
    Somoza, AM
    Mederos, L
    Sullivan, DE
    FARADAY DISCUSSIONS, 1996, 104 : 111 - 126
  • [8] Convergence to equilibrium for smectic-A liquid crystals in 3 D domains without constraints for the viscosity
    Climent-Ezquerra, Blanca
    Guillén-González, Francisco
    Nonlinear Analysis, Theory, Methods and Applications, 2014, 102 : 208 - 219
  • [9] Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity
    Liu, C
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) : 591 - 608
  • [10] PLASTIC BEHAVIOR OF A SMECTIC-A LIQUID-CRYSTAL
    BARTOLINO, R
    DURAND, G
    ANNALES DE PHYSIQUE, 1978, 3 (2-4) : 235 - 235