共 50 条
Regional mapping of soil parent material by machine learning based on point data
被引:67
|作者:
Lacoste, Marine
[1
,2
]
Lemercier, Blandine
[1
,2
,3
]
Walter, Christian
[1
,2
,3
]
机构:
[1] INRA, UMR1069, F-35000 Rennes, France
[2] AGROCAMPUS OUEST, UMR1069, F-35000 Rennes, France
[3] Univ Europeenne Bretagne, Rennes, France
关键词:
Soil parent material;
Digital soil mapping;
Regional scale;
Boosted classification tree;
Pedogenesis factor;
CLASSIFICATION-TREE;
SPATIAL PREDICTION;
REGRESSION;
LANDSCAPE;
MAP;
SUSCEPTIBILITY;
VALIDATION;
KNOWLEDGE;
ACCURACY;
EUROPE;
D O I:
10.1016/j.geomorph.2011.06.026
中图分类号:
P9 [自然地理学];
学科分类号:
0705 ;
070501 ;
摘要:
A machine learning system (MART) has been used to predict soil parent material (SPM) at the regional scale with a 50-m resolution. The use of point-specific soil observations as training data was tested as a replacement for the soil maps introduced in previous studies, with the aim of generating a more even distribution of training data over the study area and reducing information uncertainty. The 27,020-km(2) study area (Brittany, northwestern France) contains mainly metamorphic, igneous and sedimentary substrates. However, superficial deposits (aeolian loam, colluvial and alluvial deposits) very often represent the actual SPM and are typically under-represented in existing geological maps. In order to calibrate the predictive model, a total of 4920 point soil descriptions were used as training data along with 17 environmental predictors (terrain attributes derived from a 50-m DEM, as well as emissions of K, Th and U obtained by means of airborne gamma-ray spectrometry, geological variables at the 1:250,000 scale and land use maps obtained by remote sensing). Model predictions were then compared: i) during SPM model creation to point data not used in model calibration (internal validation), ii) to the entire point dataset (point validation), and iii) to existing detailed soil maps (external validation). The internal, point and external validation accuracy rates were 56%, 81% and 54%, respectively. Aeolian loam was one of the three most closely predicted substrates. Poor prediction results were associated with uncommon materials and areas with high geological complexity, i.e. areas where existing maps used for external validation were also imprecise. The resultant predictive map turned out to be more accurate than existing geological maps and moreover indicated surface deposits whose spatial coverage is consistent with actual knowledge of the area. This method proves quite useful in predicting SPM within areas where conventional mapping techniques might be too costly or lengthy or where soil maps are insufficient for use as training data. In addition, this method allows producing repeatable and interpretable results, whose accuracy can be assessed objectively. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 99
页数:10
相关论文