Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2

被引:33
|
作者
Tran, Ngoctan [1 ]
Chang, Yaw-Jen [2 ]
Wang, Chi-Chuan [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, 1001 Univ Rd, Hsinchu 300, Taiwan
[2] Chung Yuan Christian Univ, Dept Mech Engn, Chung Li City, Taiwan
关键词
Nanofluids; Trapezoidal microchannel heat sink; Substrate materials; High heat flux; Hydraulic diameters; Novel equation; Inlet-coolant temperatures; TRANSFER ENHANCEMENT; WATER NANOFLUID; FLOW; DESIGN; CHANNEL; CONDUCTIVITY;
D O I
10.1016/j.ijheatmasstransfer.2017.10.051
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a new multi-nozzle trapezoidal microchannel heat sink (MNT-MCHS) was proposed. Five substrate materials, two nanofluids with nanoparticle volume fractions, 0.1% <= phi <= 1%, and channel hydraulic diameters, 157.7 mu m <= D-h <= 248.2 mu m, were numerically examined in detail. In addition, heat fluxes in the range of 100-1450 W/cm(2) subject to inlet coolant temperature from 15 degrees C to 75 degrees C were examined in detail. A locally optimal MNT-MCHS was defined, and a novel equation was proposed for predicting the maximum temperature on the locally optimal MNT-MCHS depending on the heat flux, coolant inlet temperature, and the Reynolds number. It was found that at a Reynolds number of 900, the overall thermal resistance of a MNT-MCHS using copper as a substrate material is improved up to 76% as compared to that using stainless steel 304. The locally optimal MNT-MCHS, using TiO2-water nanofluid with phi = 1%, could dissipate a heat flux up to 1450 W/cm(2) at a Re of 900. A minimum thermal resistance in the present study is improved up to 11.6% and 36.6% in association with those of a multi nozzle MCHS and a double-layer MCHS, respectively. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 798
页数:12
相关论文
共 50 条
  • [1] The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids
    Xia, G. D.
    Liu, R.
    Wang, J.
    Du, M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 76 : 256 - 264
  • [2] Stability of TiO2 and Al2O3 Nanofluids
    Wang Xian-Ju
    Li Hai
    Li Xin-Fang
    Wang Zhou-Fei
    Lin Fang
    CHINESE PHYSICS LETTERS, 2011, 28 (08)
  • [3] Dispersion and thermal conductivity of Al2O3 and TiO2 binary nanofluids
    Yang, Liu
    Du, Kai
    MATERIALS SCIENCE AND NANOTECHNOLOGY I, 2013, 531-532 : 442 - 445
  • [4] Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins
    Ali, Abdullah Masoud
    Angelino, Matteo
    Rona, Aldo
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [5] Heat Transfer of Al2O3 Nanofluids in Microchannel Heat Sink
    Razali, A. A.
    Sadikin, A.
    Ibrahim, S. A.
    7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING (ICME'16), 2017, 1831
  • [6] Effect of using Al2O3/TiO2 hybrid nanofluids on improving the photovoltaic performance
    Murtadha, Talib K.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 47
  • [7] Comparisons of Numerical and Experimental Investigations of the Thermal Performance of Al2O3 and TiO2 Nanofluids in a Compact Plate Heat Exchanger
    Ajeeb, Wagd
    Murshed, S. M. Sohel
    NANOMATERIALS, 2022, 12 (20)
  • [8] Al2O3/TiO2 hybrid nanofluids thermal conductivity: An experimental approach
    Moldoveanu, Georgiana Madalina
    Minea, Alina Adriana
    Huminic, Gabriela
    Huminic, Angel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 137 (02) : 583 - 592
  • [9] Al2O3/TiO2 hybrid nanofluids thermal conductivityAn experimental approach
    Georgiana Madalina Moldoveanu
    Alina Adriana Minea
    Gabriela Huminic
    Angel Huminic
    Journal of Thermal Analysis and Calorimetry, 2019, 137 : 583 - 592
  • [10] Heat conductivity of nanofluids based on Al2O3, SiO2, and TiO2
    D. V. Kuznetsov
    S. P. Bardakhanov
    A. V. Nomoev
    S. A. Novopashin
    V. Z. Lygdenov
    Journal of Engineering Thermophysics, 2010, 19 : 138 - 143