Diophantine equations for classical continuous orthogonal polynomials

被引:7
|
作者
Stoll, T [1 ]
Tichy, RF [1 ]
机构
[1] Graz Univ Technol, Inst Math A, Steyrergasse 30, A-8010 Graz, Austria
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2003年 / 14卷 / 02期
关键词
D O I
10.1016/S0019-3577(03)90010-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A, B, C denote rational numbers with AB 4 0 and m > n > 3 arbitrary rational integers. We study the Diophantine equation Ap(m) (x) + Bp(n) (y) = C, in x,y epsilon Z, where {p(k)(X)} is one of the three classical continuous orthogonal polynomial families, i.e. Laguerre polynomials, Jacobi polynomials (including Gegenbauer, Legendre or Chebyshev polynomials) and Hermite polynomials. We prove that with exception of the Chebyshev, polynomials for all such polynomial families there are at most finitely many solutions (x,y) epsilon Z(2) provided n greater than or equal to 4. The tools are besides the criterion [3], a theorem of Szeg-[14] on monotonicity of stationary points of polynomials which satisfy a second order Sturm-Liouville differential equation, (ax(2) + bx + c)y(n)(n)(x) + (dx + e)y'(n) (x) - lambda(n)y(n) (x) = 0, n epsilon Zgreater than or equal to(0).
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条