Deformation quantization of fermi fields

被引:3
|
作者
Galaviz, I. [2 ]
Garcia-Compean, H. [1 ,2 ]
Przanowski, M. [3 ]
Turrubiates, F. J. [4 ]
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Unidad Monterrey Cerro Mitras 2565, Monterrey 64060, NL, Mexico
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[3] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
[4] IPN, Dept Fis, Escuela Super Fis & Matemat, Unidad Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
关键词
deformation quantization; field theory; fermionic fields; Dirac fields;
D O I
10.1016/j.aop.2007.05.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal star-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal star-product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:827 / 844
页数:18
相关论文
共 50 条
  • [1] Deformation quantization of classical fields
    García-Compeán, H
    Plebanski, JF
    Przanowski, M
    Turrubiates, FJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (14): : 2533 - 2558
  • [2] STOCHASTIC QUANTIZATION OF PARA-FERMI FIELDS
    BALAKRISHNAN, J
    BISWAS, SN
    GOYAL, A
    SONI, SK
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 156 - 163
  • [3] PROBABILISTIC IDEAS IN THE THEORY OF FERMI FIELDS - STOCHASTIC QUANTIZATION OF THE FERMI OSCILLATOR
    DEANGELIS, GF
    DEFALCO, D
    GUERRA, F
    PHYSICAL REVIEW D, 1981, 23 (08): : 1747 - 1751
  • [4] Coherent representation of fields and deformation quantization
    Berra-Montiel, Jasel
    Molgado, Alberto
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (11)
  • [5] Path-integral quantization of Galilean Fermi fields
    de Montigny, M.
    Khanna, F. C.
    Saradzhev, F. M.
    ANNALS OF PHYSICS, 2008, 323 (05) : 1191 - 1214
  • [6] Deformation quantization and the tomographic representation of quantum fields
    Berra-Montiel, Jasel
    Cartas-Fuentevilla, Roberto
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (14)
  • [7] Deformation quantization of relativistic particles in electromagnetic fields
    Sanchez, Laura
    Galaviz, Imelda
    Garcia-Compean, Hugo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (11): : 1757 - 1790
  • [8] Deformation Quantization of Commutative Families and Vector Fields
    Sharygin, Georgiy, I
    GEOMETRIC METHODS IN PHYSICS XXXVII, 2020, : 100 - 120
  • [9] Deformation quantization and the action of Poisson vector fields
    Sharygin G.
    Lobachevskii Journal of Mathematics, 2017, 38 (6) : 1093 - 1107
  • [10] Strict deformation quantization of abelian lattice gauge fields
    Teun D. H. van Nuland
    Letters in Mathematical Physics, 2022, 112