Credit Card Fraud Detection System using Machine Learning Algorithms and Fuzzy Membership

被引:0
|
作者
Abdulghani, Ahmed Qasim [1 ]
Ucan, Osman Nuri [2 ]
Alheeti, Khattab M. Ali [3 ]
机构
[1] Univ Altinbas, Inst Grad Studies, Dept Comp Engn Informat Technol, Istanbul, Turkey
[2] Univ Altinbas, Sch Sci & Engn, Dept Elect & Comp Engn, Istanbul, Turkey
[3] Univ Anbar, Coll Comp Sci & Informat Technol, Dept Comp Networking Syst, Ramadi, Iraq
关键词
Credit Card; Fraud Detection; Machine Learning; Logistic Regression; Linear Discriminant Analysis; Fuzzy Membership;
D O I
10.1109/MTICTI53925.2021.9664789
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fraudulent transactions have skyrocketed in tandem with the rise in Credit Card users. Since legitimate and fraudulent transactions look similar, it is nearly impossible to tell one from the other. This paper proposes a fraud detection system that uses Machine Learning (ML) and a fuzzy membership function to identify fraudulent transactions. The ML techniques used were Logistic regression (LR), Linear Discriminant Analysis (LDA), and the boosting algorithm XGBoost to create models for the proposed system. The dataset from Kaggle was used for training and testing these models. Many performance metrics were used to evaluate the proposed system models' efficiency: confusion matrix, accuracy, precision, f1, recall, and AUC. The results showed the superiority of the XGBoost model over the other models.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 50 条
  • [1] CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING ALGORITHMS
    Tyagi, Rishabh
    Ranjan, Ravi
    Priya, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 334 - 341
  • [2] Credit Card Fraud Detection using Machine Learning Algorithms
    Dornadula, Vaishnavi Nath
    Geetha, S.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 631 - 641
  • [3] Credit card fraud detection using machine learning algorithms
    de Souza, Daniel H. M.
    Bordin Jr, Claudio J.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2023, 15 (01): : 1 - 11
  • [4] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270
  • [5] Comparative Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Singh, Kiran Jot
    Thakur, Khushal
    Kapoor, Divneet Singh
    Sharma, Anshul
    Bajpai, Sakshi
    Sirawag, Neeraj
    Mehta, Riya
    Chaudhary, Chitransh
    Singh, Utkarsh
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 69 - 78
  • [6] Supervised Machine Learning Algorithms for Credit Card Fraud Detection: A Comparison
    Khatri, Samidha
    Arora, Aishwarya
    Agrawal, Arun Prakash
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 680 - 683
  • [7] The Performance Analysis of Machine Learning Algorithms for Credit Card Fraud Detection
    Khan, Muhammad Zohaib
    Shaikh, Sarmad Ahmed
    Shaikh, Muneer Ahmed
    Khatri, Kamlesh Kumar
    Rauf, Mahira Abdul
    Kalhoro, Ayesha
    Adnan, Muhammad
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (03) : 82 - 98
  • [8] Performance Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Mittal, Sangeeta
    Tyagi, Shivani
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 320 - 324
  • [9] A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction
    Lim, Kha Shing
    Lee, Lam Hong
    Sim, Yee-Wai
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (09): : 31 - 40
  • [10] Detecting Credit Card Fraud Using Selected Machine Learning Algorithms
    Puh, Maja
    Brkic, Ljiljana
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1250 - 1255