Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes

被引:97
|
作者
Barbieri, Edward M. [1 ,2 ]
Muir, Paul [1 ,2 ]
Akhuetie-Oni, Benjamin O. [1 ,2 ]
Yellman, Christopher M. [1 ,2 ,3 ]
Isaacs, Farren J. [1 ,2 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Yale Univ, Syst Biol Inst, West Haven, CT 06516 USA
[3] Univ Texas Austin, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
LAGGING-STRAND SYNTHESIS; SACCHAROMYCES-CEREVISIAE; RAD51; RECOMBINASE; PROTEIN-A; IN-VIVO; YEAST; REPAIR; OLIGONUCLEOTIDES; TRANSFORMATION; MUTAGENESIS;
D O I
10.1016/j.cell.2017.10.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with an efficiency of >40%, without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >10(5). This method was used to diversify a heterologous beta-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes.
引用
收藏
页码:1453 / +
页数:28
相关论文
共 50 条
  • [1] Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes.
    Liang, Z.
    Barbieri, E. M.
    Muir, P.
    Akhuetie-Oni, B. O.
    Yellman, C.
    Isaacs, F. J.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2017, 58 : S91 - S91
  • [2] Multiplex genome engineering in eukaryotes
    Katharine H. Wrighton
    Nature Reviews Genetics, 2018, 19 : 7 - 7
  • [3] SYNTHETIC BIOLOGY Multiplex genome engineering in eukaryotes
    Wrighton, Katharine H.
    NATURE REVIEWS GENETICS, 2018, 19 (01) : 6 - 6
  • [4] CRISPR tool enables precise genome editing
    Platt, Randall J.
    NATURE, 2019, 576 (7785) : 48 - 49
  • [5] CRISPR tool enables precise genome editing
    Platt, Randall J.
    NATURE, 2019, 576 (7787) : 395 - 395
  • [6] Molecular Switch Engineering for Precise Genome Editing
    Matsumoto, Daisuke
    Nomura, Wataru
    BIOCONJUGATE CHEMISTRY, 2021, 32 (04) : 639 - 648
  • [7] Prime editing enables precise genome modification of a Populus hybrid
    Zou, Jinpeng
    Li, Yuhong
    Wang, Kejian
    Wang, Chun
    Zhuo, Renying
    ABIOTECH, 2024, 5 (04) : 497 - 501
  • [8] Precise genome engineering in Drosophila using prime editing
    Bosch, Justin A.
    Birchak, Gabriel
    Perrimon, Norbert
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (01)
  • [9] Genome wide analysis of DNA replication and replication origins in higher eukaryotes.
    Herrick, J
    Stanislawski, P
    Hyrien, O
    Bensimon, A
    AMERICAN JOURNAL OF HUMAN GENETICS, 1999, 65 (04) : A2 - A2
  • [10] Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering
    Wu, Qiang
    Shou, Jia
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2020, 12 (11) : 828 - 856