Blind source separation using time-frequency information matrix given by several wavelet transforms

被引:0
|
作者
Ashino, Ryuichi [1 ]
Fujita, Keiko [2 ]
Mandai, Takeshi [3 ]
Morimoto, Akira [1 ]
Nishihara, Kiyoaki [1 ]
机构
[1] Osaka Kyoiku Univ, Osaka 5828582, Japan
[2] Saga Univ, Saga 8408502, Japan
[3] Osaka Electrocommun Univ, Res Ctr Phys & Math, Osaka 5728530, Japan
关键词
blind source separation; time-frequency information; wavelet transform;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The blind source separation method for spatial mixing problem is discussed. A matrix called time-frequency information matrix is composed of continuous wavelet transforms of observed signals with respect to several different wavelet functions. The proposed method detects the number of sources and separates sources using the time-frequency information matrix. Algorithms axe given, and numerical experiments demonstrate the proposed method works well.
引用
收藏
页码:555 / 568
页数:14
相关论文
共 50 条
  • [1] Blind source separation using time-frequency analysis
    Ashino, Ryuichi
    Mandai, Takeshi
    Morimoto, Akira
    Sasaki, Fumio
    [J]. PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS, 2007, 52 : 401 - 414
  • [2] Blind source separation using time-frequency concepts
    Fahmy, MF
    Amin, OMH
    Hasan, YMY
    El-Raheem, GM
    [J]. Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, : 250 - 253
  • [3] Blind source separation using time-frequency masking
    Mohammed, Abbas
    Ballal, Tarig
    Grbic, Nedelko
    [J]. RADIOENGINEERING, 2007, 16 (04) : 96 - 100
  • [4] TIME-FREQUENCY CLUSTERING WITH WEIGHTED AND CONTEXTUAL INFORMATION FOR CONVOLUTIVE BLIND SOURCE SEPARATION
    Jafari, Ingrid
    Atcheson, Matt
    Togneri, Roberto
    Nordholm, Sven
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 157 - 160
  • [5] Two contributions to blind source separation using time-frequency distributions
    Févotte, C
    Doncarli, C
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (03) : 386 - 389
  • [6] Time-Frequency Approach to Underdetermined Blind Source Separation
    Xie, Shengli
    Yang, Liu
    Yang, Jun-Mei
    Zhou, Guoxu
    Xiang, Yong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (02) : 306 - 316
  • [7] Contrast functions for blind source separation based on time-frequency information-theory
    Sahmoudi, M
    Amin, MG
    Abed-Meraim, K
    Belouchrani, A
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 876 - 884
  • [8] Astrophysical image separation by blind time-frequency source separation methods
    Ozgen, Mehmet Tankut
    Kuruoglu, Ercan Engin
    Herranz, Diego
    [J]. DIGITAL SIGNAL PROCESSING, 2009, 19 (02) : 360 - 369
  • [9] Blind source separation using higher-order time-frequency representations
    Kamran, ZM
    Leyman, AR
    Abed-Meraim, K
    [J]. SAM 2000: PROCEEDINGS OF THE 2000 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2000, : 276 - 280
  • [10] A bayesian approach to time-frequency based blind source separation
    Févotte, C
    Godsill, SJ
    [J]. 2005 WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2005, : 1 - 4