Uncertainty quantification using probabilistic numerics: application to models in mathematical epidemiology

被引:1
|
作者
Dukic, Vanja [1 ]
Bortz, David M. [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Probabilistic numerics; MRSA; Bayesian inference; uncertainty quantification; mathematical epidemiology; 62F15; 92D30;
D O I
10.1080/17415977.2017.1312364
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Probabilistic numerics (PN) is a framework for analysing numerical algorithms accounting for all sources of numerical errors, including errors due to both round off and the choice of numerical scheme. The goal of this work is to use a Bayesian-based PN method to illustrate the quantification of uncertainty in mathematical epidemiology modelling. We simultaneously account for the uncertainty in data, parameters, as well as numerical discretization in applying this framework to the data from an ongoing community-acquired Methicillin-resistant Staphylococcus aureus epidemic in Chicago.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [1] Network-based uncertainty quantification for mathematical models in epidemiology
    Rahnsch, Beatrix
    Taghizadeh, Leila
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2024, 577
  • [2] Probabilistic numerics and uncertainty in computations
    Hennig, Philipp
    Osborne, Michael A.
    Girolami, Mark
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2179):
  • [3] Probabilistic Uncertainty Quantification of Prediction Models with Application to Visual Localization
    Chen, Junan
    Monica, Josephine
    Chao, Wei-Lun
    Campbell, Mark
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4178 - 4184
  • [4] Constrained probabilistic collocation method for uncertainty quantification of geophysical models
    Liao, Qinzhuo
    Zhang, Dongxiao
    [J]. COMPUTATIONAL GEOSCIENCES, 2015, 19 (02) : 311 - 326
  • [5] Constrained probabilistic collocation method for uncertainty quantification of geophysical models
    Qinzhuo Liao
    Dongxiao Zhang
    [J]. Computational Geosciences, 2015, 19 : 311 - 326
  • [6] Spreadable probabilistic cellular automata models: An application in epidemiology
    Slimi, Redouane
    El Yacoubi, Samira
    [J]. CELLULAR AUTOMATA, PROCEEDINGS, 2006, 4173 : 330 - 336
  • [7] Probabilistic Models for Uncertainty Quantification of Soil Properties on Site Response Analysis
    Tran, Thanh-Tuan
    Salman, Kashif
    Han, Seung-Ryong
    Kim, Dookie
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2020, 6 (03)
  • [8] Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen
    Miki, K.
    Panesi, M.
    Prudencio, E. E.
    Prudhomme, S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3871 - 3886
  • [9] Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes
    Manfredi, Paolo
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (06) : 2360 - 2372
  • [10] Uncertainty quantification of inverse analysis for geomaterials using probabilistic programming
    Zhao, Hongbo
    Li, Shaojun
    Zang, Xiaoyu
    Liu, Xinyi
    Zhang, Lin
    Ren, Jiaolong
    [J]. JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (03) : 895 - 908