Sums of sixteen and twenty-four triangular numbers

被引:0
|
作者
Huard, JG [1 ]
Williams, KS
机构
[1] Canisius Coll, Dept Math & Stat, Buffalo, NY 14208 USA
[2] Carleton Univ, Sch Math & Stat, Ctr Res Algebra & Number Theory, Ottawa, ON K1S 5B6, Canada
关键词
triangular numbers;
D O I
10.1216/rmjm/1181069710
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The triangular numbers are the integers m(m + 1)/2, m, = 0, 1, 2, .... For a positive integer k, we let delta(k)(n) denote the number of representations of the nonnegative integer n as the sum of k triangular numbers. In 1994, using advanced methods, Kac and Wakimoto gave formulae for delta(16)(n) and delta(24)(n). Using a recent elementary identity due to Huard, On, Spearman and Williams, elementary proofs are given of these formulae.
引用
收藏
页码:857 / 868
页数:12
相关论文
共 50 条