Review and Perspective for Distance-Based Clustering of Vehicle Trajectories

被引:120
|
作者
Besse, Philippe C. [1 ]
Guillouet, Brendan [2 ,3 ]
Loubes, Jean-Michel [4 ]
Royer, Francois [3 ]
机构
[1] Inst Natl Sci Appl Toulouse, Dept Math, F-31400 Toulouse, France
[2] Univ Toulouse III Paul Sabatier, Lab Stat & Probabil, F-31062 Toulouse, France
[3] Datasio, F-31000 Toulouse, France
[4] Univ Toulouse III Paul Sabatier, Inst Math, Dept Stat & Probabil, F-31062 Toulouse, France
关键词
Trajectory clustering; MOVING-OBJECTS;
D O I
10.1109/TITS.2016.2547641
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, we tackle the issue of clustering trajectories of geolocalized observations based on the distance between trajectories. We first provide a comprehensive review of the different distances used in the literature to compare trajectories. Then, based on the limitations of these methods, we introduce a new distance: symmetrized segment-path distance (SSPD). We compare this new distance to the others according to their corresponding clustering results obtained using both the hierarchical clustering and affinity propagation methods. We finally present a python package: trajectory distance, which contains the methods for calculating the SSPD distance, and the other distances reviewed in this paper.
引用
收藏
页码:3306 / 3317
页数:12
相关论文
共 50 条
  • [1] Distance-based clustering of mixed data
    van de Velden, Michel
    D'Enza, Alfonso Iodice
    Markos, Angelos
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2019, 11 (03)
  • [2] Distance-based clustering of CGH data
    Liu, Jun
    Mohammed, Jaaved
    Carter, James
    Ranka, Sanjay
    Kahveci, Tamer
    Baudis, Michael
    [J]. BIOINFORMATICS, 2006, 22 (16) : 1971 - 1978
  • [3] Hierarchical Distance-Based Conceptual Clustering
    Funes, A.
    Ferri, C.
    Hernandez-Orallo, J.
    Ramirez-Quintana, M. J.
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART I, PROCEEDINGS, 2008, 5211 : 349 - +
  • [4] Efficient Assessment of Reservoir Uncertainty Using Distance-Based Clustering: A Review
    Kang, Byeongcheol
    Kim, Sungil
    Jung, Hyungsik
    Choe, Jonggeun
    Lee, Kyungbook
    [J]. ENERGIES, 2019, 12 (10)
  • [5] Distance-based clustering using QUBO formulations
    Nasa Matsumoto
    Yohei Hamakawa
    Kosuke Tatsumura
    Kazue Kudo
    [J]. Scientific Reports, 12
  • [6] Distance-based clustering using QUBO formulations
    Matsumoto, Nasa
    Hamakawa, Yohei
    Tatsumura, Kosuke
    Kudo, Kazue
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] SmallSteps: An adaptive distance-based clustering algorithm
    [J]. 2001, University of Szeged, Arpad ter 2., Szeged, H-6720, Hungary (15):
  • [8] NEW HAUSDORFF DISTANCE-BASED VEHICLE LOCATION
    陈莹
    韩崇昭
    [J]. Journal of Pharmaceutical Analysis, 2004, (02) : 122 - 126
  • [9] Clustering of Trajectories Based on Hausdorff Distance
    Chen, Jinyang
    Wang, Rangding
    Liu, Liangxu
    Song, Jiatao
    [J]. 2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1940 - 1944
  • [10] Distance-based vehicle insurance as a TDM strategy
    Litman, T
    [J]. TRANSPORTATION QUARTERLY, 1997, 51 (03): : 119 - 137