We consider a general anisotropic spin-orbit coupling and analyze the phase diagrams of both balanced and imbalanced Fermi gases for the entire BCS-BEC evolution. In the first part, we use the self-consistent mean-field theory at zero temperature, and show that the topological structure of the ground-state phase diagrams is quite robust against the effects of anisotropy. In the second part, we go beyond the mean-field description, and investigate the effects of Gaussian fluctuations near the critical temperature. This allows us to derive the time-dependent Ginzburg-Landau theory, from which we extract the effective mass of the Cooper pairs and their critical condensation temperature in the molecular BEC limit.