Signed Total k-independence in Digraphs

被引:0
|
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Digraph; Signed total k-independence function; Signed total k-independence number; Nordhaus-Gaddum type results; GRAPHS;
D O I
10.2298/FIL1410121V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k >= 2 be an integer. A function f : V(D) -> {-1, 1} defined on the vertex set V(D) of a digraph D is a signed total k-independence function if Sigma(x is an element of N-(v)) f(x) <= k - 1 for each v is an element of V(D), where N-(v) consists of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is defined by w(f) = Sigma(x is an element of V(D)) f(x). The maximum of weights w(f), taken over all signed total k-independence functions f on D, is the signed total k-independence number alpha(k)(st) (D) of D. In this work, we mainly present upper bounds on alpha(k)(st) (D), as for example alpha(k)(st) (D) <= n - 2 [(Lambda(-) + 1 - k)/2] and alpha(k)(st) (D) <= Lambda(+) + 2k - delta(+) - 2/Delta(+) + delta(+). n, where n is the order, Delta(-) the maximum indegree and Delta(+) and delta(+) are the maximum and minimum outdegree of the digraph D. Some of our results imply well-known properties on the signed total 2-independence number of graphs.
引用
收藏
页码:2121 / 2130
页数:10
相关论文
共 50 条
  • [1] Signed k-independence in digraphs
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2014, 94 : 183 - 197
  • [2] Signed total k-independence in graphs
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2017, 103 : 189 - 208
  • [3] ON THE SIGNED (TOTAL) k-INDEPENDENCE NUMBER IN GRAPHS
    Khodkar, Abdollah
    Samadi, Babak
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 651 - 662
  • [4] Signed k-independence in graphs
    Volkmann, Lutz
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (03): : 517 - 528
  • [5] Remarks on the complexity of signed k-independence on graphs
    Lee, Chuan-Min
    ARS COMBINATORIA, 2015, 123 : 303 - 315
  • [6] Signed total 2-independence in digraphs
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2017, 104 : 295 - 306
  • [7] Signed total (k, k)-domatic number of digraphs
    Sheikholeslami, S. M.
    Volkmann, L.
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 87 - 96
  • [8] Signed total (k, k)-domatic number of digraphs
    S. M. Sheikholeslami
    L. Volkmann
    Aequationes mathematicae, 2012, 83 : 87 - 96
  • [9] Signed total Italian k-domination in digraphs
    Volkmann, Lutz
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (02) : 339 - 351
  • [10] ON THE k-INDEPENDENCE NUMBER OF GRAPHPRODUCTS
    Abiad, Aida
    Koerts, Hidde
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 983 - 996