Signed Total Domination and Mycielski Structure in Graphs

被引:0
|
作者
Ghameshlou, Arezoo. N. [1 ]
Shaminezhad, Athena [2 ]
机构
[1] Univ Tehran, Dept Irrigat & Reclamat Engn, Tehran, Iran
[2] Imam Khomeini Int Univ, Dept Basic Sci, Qazvin, Iran
基金
中国国家自然科学基金;
关键词
Signed total domination number; Mycielski construction; QUANTUM KEY DISTRIBUTION; SIGNATURE SCHEME; SECURITY;
D O I
10.1007/978-3-319-66514-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let G = (V, E) be a graph. The function f : V (G) -> {-1, 1} is a signed total dominating function if for every vertex v is an element of V (G), Sigma(x is an element of NG(v)) f(x) >= 1. The value of omega(f) = Sigma(x is an element of V (G)) f(x) is called the weight of f. The signed total domination number of G is the minimum weight of a signed total dominating function of G. In this paper, we initiate the study of the signed total domination numbers of Mycielski graphs and find some upper bounds for this parameter. We also calculate the exact value of the signed total domination number of the Mycielski graph when the underlying graph is a special graph.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [1] Signed domination and Mycielski's structure in graphs
    Ghameshlou, Arezoo N.
    Shaminezhad, Athena
    Vatandoost, Ebrahim
    Khodkar, Abdollah
    RAIRO-OPERATIONS RESEARCH, 2020, 54 (04) : 1077 - 1086
  • [2] Signed Total Domination in Graphs
    邢化明
    孙良
    陈学刚
    Journal of Beijing Institute of Technology(English Edition), 2003, (03) : 319 - 321
  • [3] Signed total domination in graphs
    Henning, MA
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 109 - 125
  • [4] The Signed Total Domination Number of Graphs
    Gao, Mingjing
    Shan, Erfang
    ARS COMBINATORIA, 2011, 98 : 15 - 24
  • [5] Signed total Italian domination in graphs
    Volkmann, Lutz
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 115 : 291 - 305
  • [6] On signed majority total domination in graphs
    Xing, HM
    Sun, L
    Chen, XG
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (02) : 341 - 348
  • [7] On signed majority total domination in graphs
    Hua-Ming Xing
    Liang Sun
    Xue-Gang Chen
    Czechoslovak Mathematical Journal, 2005, 55 : 341 - 348
  • [8] Signed total Roman domination in graphs
    Lutz Volkmann
    Journal of Combinatorial Optimization, 2016, 32 : 855 - 871
  • [9] Global signed total domination in graphs
    Atapour, Maryam
    Tabriz, Seyed Mahmoud Sheikholeslami
    Khodkar, Abdollah
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (1-2): : 7 - 22
  • [10] Signed total Roman domination in graphs
    Volkmann, Lutz
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 855 - 871