Bergmann's rule in the oceans? Temperature strongly correlates with global interspecific patterns of body size in marine mammals

被引:36
|
作者
Joaquin Torres-Romero, Erik [1 ,2 ]
Morales-Castilla, Ignacio [3 ,4 ]
Olalla-Tarraga, Miguel A. [2 ]
机构
[1] Univ Alcala, Dept Life Sci, Madrid, Spain
[2] Rey Juan Carlos Univ, Dept Biol & Geol, Phys & Inorgan Chem, Madrid, Spain
[3] McGill Univ, Dept Biol, Montreal, PQ, Canada
[4] Quebec Ctr Biodivers Sci, Montreal, PQ, Canada
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2016年 / 25卷 / 10期
关键词
Assemblage-based method; Bergmann's rule; body size gradients; cross-species; heat conservation hypothesis; human impact; marine mammals; NET PRIMARY PRODUCTIVITY; ECOGEOGRAPHICAL RULES; EVOLUTIONARY HISTORY; EXTINCTION RISK; ECOLOGY; BIOGEOGRAPHY; DIVERGENCE; PREDICTORS; GEOGRAPHY; GRADIENT;
D O I
10.1111/geb.12476
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
AimBergmann's rule remains unexplored in marine mammals. We first examine at a global extent whether these organisms show the same interspecific pattern reported for terrestrial mammals and then evaluate the influence of current environmental conditions and human impacts on the observed patterns. LocationGlobal. MethodsWe used range maps to document interspecific body size gradients and examined six environmental and human-based hypotheses. We analysed the data using a comparative cross-species method and a spatially explicit assemblage approach at three different grain sizes (200 km x 200 km, 400 km x 400 km and 800 km x 800 km). The associations between hypothesis-linked predictors and body size were analysed through simple and multiple regressions that controlled for both spatial and phylogenetic autocorrelation. ResultsWe detected clear global latitudinal body size gradients, following a Bergmannian pattern (i.e. increasing size polewards). Consistently across methodological approaches (cross-species and assemblage analyses) and grain sizes, sea surface temperature is the best predictor. Spatially, the temperature-size relationship is stronger in the Southern than in the Northern Hemisphere. Pinniped body sizes are critically constrained by temperature world-wide whereas cetacean size clines show a weaker, albeit dominant, association with temperature. Main conclusionsAs in terrestrial mammals, our findings show that ambient temperature better explains interspecific body size patterns in cetaceans, and especially pinnipeds, world-wide. Large-bodied species are favoured in colder environments, in accordance with Bergmann's rule and the heat conservation hypothesis. However, our analyses also reveal a relevant role for salinity and primary productivity in migratory cetacean species. The large body sizes of baleen whales are essential for migration, for survival during fasting periods and minimizing the effects of temperature variation. This finding highlights the importance of spatially and phylogenetically explicit deconstructive approaches, considering alternative hypotheses to the traditional physiological mechanism, to gain a better understanding of Bergmann's rule.
引用
收藏
页码:1206 / 1215
页数:10
相关论文
共 50 条
  • [1] Bergmann's rule and body size in mammals
    Freckleton, RP
    Harvey, PH
    Pagel, M
    AMERICAN NATURALIST, 2003, 161 (05): : 821 - 825
  • [2] Interspecific variation in paper wasp body size supports the converse Bergmann's rule
    de Souza, Andre R.
    Lopez, Vinicius M.
    Somavilla, Alexandre
    Nascimento, Fabio S.
    Ferreira, Rhainer Guillermo
    Yotoko, Karla
    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2024,
  • [3] A global assessment of Bergmann's rule in mammals and birds
    He, Jiekun
    Tu, Jiahao
    Yu, Jiehua
    Jiang, Haisheng
    GLOBAL CHANGE BIOLOGY, 2023, 29 (18) : 5199 - 5210
  • [4] Bergmann's rule in mammals: a cross-species interspecific pattern
    Clauss, Marcus
    Dittmann, Marie T.
    Mueller, Dennis W. H.
    Meloro, Carlo
    Codron, Daryl
    OIKOS, 2013, 122 (10) : 1465 - 1472
  • [5] An interspecific test of Bergmann's rule reveals inconsistent body size patterns across several lineages of water beetles (Coleoptera: Dytiscidae)
    Pallares, Susana
    Lai, Michele
    Abellan, Pedro
    Ribera, Ignacio
    Sanchez-Fernandez, David
    ECOLOGICAL ENTOMOLOGY, 2019, 44 (02) : 249 - 254
  • [6] Energy and interspecific body size patterns of amphibian faunas in Europe and North America:: anurans follow Bergmann's rule, urodeles its converse
    Olalla-Tarraga, Miguel A.
    Rodriguez, Miguel A.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2007, 16 (05): : 606 - 617
  • [7] Global warming, Bergmann's rule and body size in the masked shrew Sorex cinereus Kerr in Alaska
    Yom-Tov, Y
    Yom-Tov, J
    JOURNAL OF ANIMAL ECOLOGY, 2005, 74 (05) : 803 - 808
  • [8] Patterns of within-species body size variation of birds: strong evidence for Bergmann's rule
    Ashton, KG
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2002, 11 (06): : 505 - 523
  • [9] Bergmann's rule and the geography of mammal body size in the Western Hemisphere
    Rodriguez, Miguel A.
    Olalla-Tarraga, Miguel A.
    Hawkins, Bradford A.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2008, 17 (02): : 274 - 283
  • [10] Against Bergmann's rule: fly sperm size increases with temperature
    Blanckenhorn, WU
    Hellriegel, B
    ECOLOGY LETTERS, 2002, 5 (01) : 7 - 10