Nonextensive maximum-entropy-based formalism for data subset selection

被引:6
|
作者
Rebolla-Neira, L [1 ]
Plastino, A
机构
[1] Aston Univ, NCRG, Birmingham B4 7ET, W Midlands, England
[2] Natl Univ La Plata, Inst Fis La Plata, RA-1900 La Plata, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 01期
关键词
D O I
10.1103/PhysRevE.65.011113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A method for data subset selection, which is based on the q = 1/2 maximum information measure formalism, is proposed. The method evolves iteratively by selecting, at each iteration, the measure yielding a q = 1/2 distribution capable of making predictions minimizing the Euclidean distance to the available data.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Maximum-entropy-based tomography for plasma diagnostics
    Denisova, NV
    [J]. INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES, VOL II, PROCEEDINGS, 1999, : 27 - 28
  • [2] A maximum-entropy-based method for alarm flood prediction
    Xu, Yizhou
    Wang, Jiandong
    [J]. JOURNAL OF PROCESS CONTROL, 2021, 107 : 58 - 69
  • [3] Maximum-entropy-based metrics for quantifying critical dynamics in spiking neuron data
    Serafim, Felipe
    Carvalho, Tawan T. A.
    Copelli, Mauro
    Carelli, Pedro V.
    [J]. PHYSICAL REVIEW E, 2024, 110 (02)
  • [4] Maximum-entropy-based tomography for gas and plasma diagnostics
    Denisova, NV
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (15) : 1888 - 1895
  • [5] Maximum-entropy-based tomography for gas and plasma diagnostics
    Inst of Theoretical and Applied, Mechanics, Novosibirsk, Russia
    [J]. J Phys D, 15 (1888-1895):
  • [6] On construction of the entropy transport model based on the formalism of nonextensive statistics
    Kolesnichenko A.V.
    [J]. Mathematical Models and Computer Simulations, 2014, 6 (6) : 587 - 597
  • [7] MAXIMUM-ENTROPY-BASED APPROACHES TO X-RAY STRUCTURE DETERMINATION AND DATA-PROCESSING
    STEENSTRUP, S
    WILKINS, SW
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS /, 1989, 36 : 203 - 212
  • [8] Maximum-Entropy-Based Multiple Kernel Fuzzy CMeans Clustering Algorithm
    Zhou, Jin
    Chen, C. L. Philip
    Chen, Long
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 1198 - 1203
  • [9] Maximum Entropy based Data Selection for Speaker Recognition
    Huang, Chien-Lin
    Ma, Bin
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2724 - 2727
  • [10] Parameterized maximum-entropy-based three-way approximate attribute reduction
    Gao, Can
    Zhou, Jie
    Xing, Jinming
    Yue, Xiaodong
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 151 : 85 - 100