Parametrizing the Kepler exoplanet period-radius distribution with the bivariate normal inverse Gaussian distribution

被引:1
|
作者
Chen, Jen-Hao [1 ]
Hung, Wen-Liang [2 ,3 ]
机构
[1] Natl Tsing Hua Univ, Inst Computat & Modeling Sci, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Ctr Teacher Educ, Hsinchu, Taiwan
[3] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan
关键词
GK-type star; Kepler planets; normal inverse Gaussian distribution; occurrence rate; particle swarm optimization; MAXIMUM-LIKELIHOOD;
D O I
10.1080/02664763.2018.1508558
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a simple and robust method for obtaining a comprehensive understanding of the joint period and radius distribution in Kepler exoplanets. The proposed method is based on particle swarm optimization and bivariate Normal Inverse Gaussian distribution. Furthermore, in the construction of the probability density function, this study selects planet-host stars with the GK-type. The injecting approach is also employed to solve the survey completeness of sample. The resulting occurrence rate of Earth analogs is 0.025 with a 95% bootstrap confidence interval between 0.023 and 0.032.
引用
收藏
页码:725 / 736
页数:12
相关论文
共 50 条
  • [1] BIVARIATE INVERSE GAUSSIAN DISTRIBUTION
    ALHUSSAINI, EK
    ABDELHAKIM, NS
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1981, 33 (01) : 57 - 66
  • [2] Parametrizing the exoplanet eccentricity distribution with the Beta distribution
    Kipping, David M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 434 (01) : L51 - L55
  • [3] THE BIVARIATE INVERSE GAUSSIAN DISTRIBUTION - AN INTRODUCTION
    KOCHERLAKOTA, S
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1986, 15 (04) : 1081 - 1112
  • [4] EMERGING TRENDS IN A PERIOD-RADIUS DISTRIBUTION OF CLOSE-IN PLANETS
    Beauge, C.
    Nesvorny, D.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 763 (01):
  • [5] EM-ALGORITHM FOR A NORMAL-WEIGHTED INVERSE GAUSSIAN DISTRIBUTION: NORMAL-RECIPROCAL INVERSE GAUSSIAN DISTRIBUTION
    Maina, Calvin B.
    Weke, Patrick G. O.
    Ogutu, Carolyne A.
    Ottieno, Joseph A. M.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 72 (01) : 1 - 24
  • [6] Clustering with the multivariate normal inverse Gaussian distribution
    O'Hagan, Adrian
    Murphy, Thomas Brendan
    Gormley, Isobel Claire
    McNicholas, Paul D.
    Karlis, Dimitris
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 18 - 30
  • [7] The normal inverse Gaussian distribution as a model for MUI
    Salberg, AB
    Swami, A
    Oigård, TA
    Hanssen, A
    [J]. CONFERENCE RECORD OF THE THIRTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2001, : 1484 - 1488
  • [8] The Normal Inverse Gaussian Distribution and the Pricing of Derivatives
    Eriksson, Anders
    Ghysels, Eric
    Wang, Fangfang
    [J]. JOURNAL OF DERIVATIVES, 2009, 16 (03): : 23 - 37
  • [9] Properties of an inverse Gaussian mixture of bivariate exponential distribution and its generalization
    AlMutairi, DK
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 33 (04) : 359 - 365
  • [10] The exoplanet eccentricity distribution from Kepler planet candidates
    Kane, Stephen R.
    Ciardi, David R.
    Gelino, Dawn M.
    von Braun, Kaspar
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (01) : 757 - 762