Countable Homogeneous Lattices

被引:2
|
作者
Abogatma, A. [1 ,2 ]
Truss, J. K. [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Garyounis Benghazi, Dept Math, Benghazi, Libya
基金
英国工程与自然科学研究理事会;
关键词
Lattice; Homogeneous; Amalgamation property; AMALGAMATION PROPERTY; COPRODUCTS; VARIETIES;
D O I
10.1007/s11083-014-9328-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there are uncountably many countable homogeneous lattices. We give a discussion of which such lattices can be modular or distributive. The method applies to show that certain other classes of structures also have uncountably many homogeneous members.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 50 条
  • [1] Countable Homogeneous Lattices
    A. Abogatma
    J. K. Truss
    [J]. Order, 2015, 32 : 239 - 243
  • [2] COUNTABLE HOMOGENEOUS TOURNAMENTS
    LACHLAN, AH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) : 431 - 461
  • [3] FUZZY COUNTABLE SEMICONTINUOUS LATTICES
    Zhao, Chongyun
    Jiang, Guanghao
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (01): : 41 - 55
  • [5] A homogeneous space of point-countable but not of countable type
    Basile, Desiree
    van Mill, Jan
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (03): : 459 - 463
  • [6] ON SLIGHT HOMOGENEOUS AND COUNTABLE DENSE HOMOGENEOUS SPACES
    Al Ghour, Samer
    Al Khatib, Nahed
    [J]. MATEMATICKI VESNIK, 2011, 63 (02): : 133 - 144
  • [7] Countable homogeneous multipartite graphs
    Jenkinson, Tristan
    Truss, J. K.
    Seidel, Daniel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (01) : 82 - 109
  • [8] Homogeneous ideals on countable sets
    A. Kwela
    J. Tryba
    [J]. Acta Mathematica Hungarica, 2017, 151 : 139 - 161
  • [9] FAMILY OF COUNTABLE HOMOGENEOUS GRAPHS
    HENSON, CW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (01) : 69 - &
  • [10] Homogeneous ideals on countable sets
    Kwela, A.
    Tryba, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 139 - 161