A multivariate finite mixture latent trajectory model with application to dementia studies

被引:15
|
作者
Lai, Dongbing [1 ]
Xu, Huiping [2 ,3 ]
Koller, Daniel [1 ]
Foroud, Tatiana [1 ]
Gao, Sujuan [2 ,3 ]
机构
[1] Indiana Univ Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
[3] Sch Med, Indianapolis, IN USA
基金
美国国家卫生研究院;
关键词
Multivariate finite mixture latent trajectory; cognitive decline; dementia; DATA SET UDS; ALZHEIMERS-DISEASE; DEVELOPMENTAL TRAJECTORIES; APOLIPOPROTEIN-E; JOINT ANALYSIS; TYPE-4; ALLELE; DEGENERATION; DIAGNOSIS;
D O I
10.1080/02664763.2016.1141181
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients' decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set from the National Alzheimer's Coordinating Center to identify cognitive decline patterns among dementia patients.
引用
收藏
页码:2503 / 2523
页数:21
相关论文
共 50 条
  • [1] A finite mixture latent trajectory model for modeling ultrarunners' behavior in a 24-hour race
    Bartolucci, Francesco
    Murphy, Thomas Brendan
    [J]. JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2015, 11 (04) : 193 - 203
  • [2] Modelling multivariate disease rates with a latent structure mixture model
    Hewson, P. J.
    Bailey, T. C.
    [J]. STATISTICAL MODELLING, 2010, 10 (03) : 241 - 264
  • [3] Multidimensional latent trait linearmixed model: an application in clinical studies with multivariate longitudinal outcomes
    Wang, Jue
    Luo, Sheng
    [J]. STATISTICS IN MEDICINE, 2017, 36 (20) : 3244 - 3256
  • [4] Finite mixture model for the application in forestry
    Liu, Fuxiang
    [J]. PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON EDUCATION, SPORTS, ARTS AND MANAGEMENT ENGINEERING (ICESAME 2017), 2017, 123 : 1492 - 1497
  • [5] A LATENT TRAIT FINITE MIXTURE MODEL FOR THE ANALYSIS OF RATING AGREEMENT
    UEBERSAX, JS
    GROVE, WM
    [J]. BIOMETRICS, 1993, 49 (03) : 823 - 835
  • [6] A finite mixture model for multivariate counts under endogenous selectivity
    Marco Alfò
    Antonello Maruotti
    Giovanni Trovato
    [J]. Statistics and Computing, 2011, 21 : 185 - 202
  • [7] A finite mixture model for multivariate counts under endogenous selectivity
    Alfo, Marco
    Maruotti, Antonello
    Trovato, Giovanni
    [J]. STATISTICS AND COMPUTING, 2011, 21 (02) : 185 - 202
  • [8] Latent trajectory modelling of multivariate binary data
    Beath, Ken J.
    Heller, Gillian Z.
    [J]. STATISTICAL MODELLING, 2009, 9 (03) : 199 - 213
  • [9] Latent mixture models for multivariate and longitudinal outcomes
    Pickles, Andrew
    Croudace, Tim
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2010, 19 (03) : 271 - 289
  • [10] Relative trajectory cost estimation for CTOP applications using multivariate nonparametric finite mixture logit
    Tereshchenko I.
    Hansen M.
    [J]. Tereshchenko, Ivan (terivan2006@berkeley.edu), 1600, Springer (11): : 367 - 377